我正在阅读 CLRS 的算法简介。本书展示了简单的分治矩阵乘法的伪代码:
n = A.rows
let c be a new n x n matrix
if n == 1
c11 = a11 * b11
else partition A, B, and C
C11 = SquareMatrixMultiplyRecursive(A11, B11)
+ SquareMatrixMultiplyRecursive(A12, B21)
//...
return C
例如,A11 是大小为 n/2 xn/2 的 A 的子矩阵。作者还暗示我应该使用索引计算而不是创建新矩阵来表示子矩阵,所以我这样做了:
#include <iostream>
#include <vector>
template<class T>
struct Matrix
{
Matrix(size_t r, size_t c)
{
Data.resize(c, std::vector<T>(r, 0));
}
void SetSubMatrix(const int r, const int c, const int n, const Matrix<T>& A, const Matrix<T>& B)
{
for(int _c=c; _c<n; ++_c)
{
for(int _r=r; _r<n; ++_r)
{
Data[_c][_r] = A.Data[_c][_r] + B.Data[_c][_r];
}
}
}
static Matrix<T> SquareMultiplyRecursive(Matrix<T>& A, Matrix<T>& B, int ar, int ac, int br, int bc, int n)
{
Matrix<T> C(n, n);
if(n == 1)
{
C.Data[0][0] = A.Data[ac][ar] * B.Data[bc][br];
}
else
{
C.SetSubMatrix(0, 0, n / 2,
SquareMultiplyRecursive(A, B, ar, ac, br, bc, n / 2),
SquareMultiplyRecursive(A, B, ar, ac + (n / 2), br + (n / 2), bc, n / 2));
C.SetSubMatrix(0, n / 2, n / 2,
SquareMultiplyRecursive(A, B, ar, ac, br, bc + (n / 2), n / 2),
SquareMultiplyRecursive(A, B, ar, ac + (n / 2), br + (n / 2), bc + (n / 2), n / 2));
C.SetSubMatrix(n / 2, 0, n / 2,
SquareMultiplyRecursive(A, B, ar + (n / 2), ac, br, bc, n / 2),
SquareMultiplyRecursive(A, B, ar + (n / 2), ac + (n / 2), br + (n / 2), bc, n / 2));
C.SetSubMatrix(n / 2, n / 2, n / 2,
SquareMultiplyRecursive(A, B, ar + (n / 2), ac, br, bc + (n / 2), n / 2),
SquareMultiplyRecursive(A, B, ar + (n / 2), ac + (n / 2), br + (n / 2), bc + (n / 2), n / 2));
}
return C;
}
void Print()
{
for(int c=0; c<Data.size(); ++c)
{
for(int r=0; r<Data[0].size(); ++r)
{
std::cout << Data[c][r] << " ";
}
std::cout << "\n";
}
std::cout << "\n";
}
std::vector<std::vector<T> > Data;
};
int main()
{
Matrix<int> A(2, 2);
Matrix<int> B(2, 2);
A.Data[0][0] = 2;
A.Data[0][1] = 1;
A.Data[1][0] = 1;
A.Data[1][1] = 2;
B.Data[0][0] = 2;
B.Data[0][1] = 1;
B.Data[1][0] = 1;
B.Data[1][1] = 2;
A.Print();
B.Print();
Matrix<int> C(Matrix<int>::SquareMultiplyRecursive(A, B, 0, 0, 0, 0, 2));
C.Print();
}
它给了我不正确的结果,但我不确定我做错了什么......