This is a fairly typical question; there are lots of reasonable answers, but there is only one correct approach (in my opinion).
You're basically asking "should I denormalize my schema?". I believe that you should denormalize your schema only if you really, really have to. The way you know you have to is because you can prove that - under current or anticipated circumstances - you have a performance problem with real-life queries.
On modern hardware, with a well-tuned database, finding the latest record in table B by doing a join is almost certainly not going to have a noticable performance impact unless you have HUGE amounts of data.
So, my recommendation: create a test system, populate the two tables with twice as much data as the system will ever need, and run the queries you have on the production environment. Check the query plans, and see if you can optimize the queries and/or indexing. If you really can't make it work, de-normalize the table.
Whilst this may seem like a lot of work, denormalization is a big deal - in my experience, on a moderately complex system, denormalized data schemas are at the heart of a lot of stupid bugs. It makes introducing new developers harder, it means additional complexity at the application level, and the extra code means more maintenance. In your case, if the code which updates table A fails, you will be producing bogus results without ever knowing about it; an undetected bug could affect lots of data.