0

刚得到一个我试图理解的奇怪结果。我有一个大约 325k 行(列表)的数据集,每行大约 90 个项目(字符串、浮点数等 - 这并不重要)。比如说,如果我想对所有项目进行一些处理,那么我可以使用 2 个“for”来迭代它们:

for eachRow in rows:
    for eachItem in eachRow:
        # do something

在我的系统中,这段代码执行了 41 秒。但是,如果我用一系列索引访问( eachRow[0]、eachRowm[1] 直到 eachRow[89] )替换嵌套循环,执行时间将下降到 25 秒。

for eachRow in rows:
    eachRow[0]  # do something with this item
    eachRow[1]  # do something with this item
    ..
    eachRow[89] # do something with this item

当然,写这样的代码不是一个好主意——我只是在寻找一种提高数据处理性能的方法,偶然发现了这种奇怪的方法。任何意见?

4

3 回答 3

1

展开似乎确实有轻微的性能优势,但它可以忽略不计,所以除非你的do_something函数真的几乎什么都不做,否则你不应该看到差异。我很难相信不同方法的等效行为可能达到 60%,尽管我总是愿意对一些我从未想过的实现细节感到惊讶。

tl;博士总结,使用 32500 而不是 325000 因为我不耐烦:

do_nothing easy 3.44702410698
do_nothing indexed 3.99766016006
do_nothing mapped 4.36127090454
do_nothing unrolled 3.33416581154
do_something easy 5.4152610302
do_something indexed 5.95649385452
do_something mapped 6.20316290855
do_something unrolled 5.2877831459
do_more easy 16.6573209763
do_more indexed 16.8381450176
do_more mapped 17.6184959412
do_more unrolled 16.0713188648

CPython 2.7.3,代码:

from timeit import Timer

nrows = 32500
ncols = 90
a = [[1.0*i for i in range(ncols)] for j in range(nrows)]

def do_nothing(x):
    pass

def do_something(x):
    z = x+3
    return z

def do_more(x):
    z = x**3+x**0.5+4
    return z

def easy(rows, action):
    for eachRow in rows:
        for eachItem in eachRow:
            action(eachItem)

def mapped(rows, action):
    for eachRow in rows:
        map(action, eachRow)

def indexed(rows, action):
    for eachRow in rows:
        for i in xrange(len(eachRow)):
            action(eachRow[i])

def unrolled(rows, action):
    for eachRow in rows:
        action(eachRow[0])
        action(eachRow[1])
        action(eachRow[2])
        action(eachRow[3])
        action(eachRow[4])
        action(eachRow[5])
        action(eachRow[6])
        action(eachRow[7])
        action(eachRow[8])
        action(eachRow[9])
        action(eachRow[10])
        action(eachRow[11])
        action(eachRow[12])
        action(eachRow[13])
        action(eachRow[14])
        action(eachRow[15])
        action(eachRow[16])
        action(eachRow[17])
        action(eachRow[18])
        action(eachRow[19])
        action(eachRow[20])
        action(eachRow[21])
        action(eachRow[22])
        action(eachRow[23])
        action(eachRow[24])
        action(eachRow[25])
        action(eachRow[26])
        action(eachRow[27])
        action(eachRow[28])
        action(eachRow[29])
        action(eachRow[30])
        action(eachRow[31])
        action(eachRow[32])
        action(eachRow[33])
        action(eachRow[34])
        action(eachRow[35])
        action(eachRow[36])
        action(eachRow[37])
        action(eachRow[38])
        action(eachRow[39])
        action(eachRow[40])
        action(eachRow[41])
        action(eachRow[42])
        action(eachRow[43])
        action(eachRow[44])
        action(eachRow[45])
        action(eachRow[46])
        action(eachRow[47])
        action(eachRow[48])
        action(eachRow[49])
        action(eachRow[50])
        action(eachRow[51])
        action(eachRow[52])
        action(eachRow[53])
        action(eachRow[54])
        action(eachRow[55])
        action(eachRow[56])
        action(eachRow[57])
        action(eachRow[58])
        action(eachRow[59])
        action(eachRow[60])
        action(eachRow[61])
        action(eachRow[62])
        action(eachRow[63])
        action(eachRow[64])
        action(eachRow[65])
        action(eachRow[66])
        action(eachRow[67])
        action(eachRow[68])
        action(eachRow[69])
        action(eachRow[70])
        action(eachRow[71])
        action(eachRow[72])
        action(eachRow[73])
        action(eachRow[74])
        action(eachRow[75])
        action(eachRow[76])
        action(eachRow[77])
        action(eachRow[78])
        action(eachRow[79])
        action(eachRow[80])
        action(eachRow[81])
        action(eachRow[82])
        action(eachRow[83])
        action(eachRow[84])
        action(eachRow[85])
        action(eachRow[86])
        action(eachRow[87])
        action(eachRow[88])
        action(eachRow[89])


def timestuff():
    for action in 'do_nothing do_something do_more'.split():
        for name in 'easy indexed mapped unrolled'.split():
            t = Timer(setup="""
from __main__ import {} as fn
from __main__ import {} as action
from __main__ import a
""".format(name, action),
                      stmt="fn(a, action)").timeit(10)
            print action, name, t

if __name__ == '__main__':
    timestuff()

(请注意,我并没有费心使比较完全公平,因为我只是试图衡量变化的可能规模,即顺序统一的变化与否。)

于 2012-09-10T16:53:24.800 回答
0

对不起各位,是我的错。我的系统出了点问题(这不是一个独立的 Python 解释器,而是一个内置的大系统)。重新启动整个系统后,我得到了正确的结果——两种变体大约 2.8 秒。我觉得我好笨。由于无关紧要,正在寻找一种删除我的问题的方法。

于 2012-09-10T16:51:46.813 回答
0

与其他计时的响应者不同,我发现计时有很大差异。首先,我的代码:

import random
import string
import timeit

r = 1000
outer1 = [[[''.join([random.choice(string.ascii_letters) for j in range(10)])] for k in range(90)] for l in range(r)]
outer2 = [[[''.join([random.choice(string.ascii_letters) for j in range(10)])] for k in range(90)] for l in range(r)]
outer3 = [[[''.join([random.choice(string.ascii_letters) for j in range(10)])] for k in range(90)] for l in range(r)]

def x1(L):
    for outer in L:
        for inner in L:
            inner = inner[:-1]

def x2(L):
    for outer in L:
        for y in range(len(outer)):
            outer[y] = outer[y][:-1]

def x3(L):
    for x in range(len(L)):
        for y in range(len(L[x])):
            L[x][y] = L[x][y][:-1]

print "x1 =",timeit.Timer('x1(outer1)', "from __main__ import x1,outer1").timeit(10)
print "x2 =",timeit.Timer('x2(outer2)', "from __main__ import x2,outer2").timeit(10)
print "x3 =",timeit.Timer('x3(outer3)', "from __main__ import x3,outer3").timeit(10)

请注意,我正在运行这 10 次。每个列表都填充了 3000 个项目,每个项目包含 90 个项目,每个项目都是由十个字母组成的随机字符串。

代表性结果:

x1 = 8.0179214353
x2 = 0.118051644801
x3 = 0.150409681521

不使用索引的函数 (x1) 的执行时间是仅对内部循环使用索引的函数 (x2)的66 倍。奇怪的是,只对内循环使用索引的函数 (x2) 比对外循环和内循环都使用索引的函数 (x3) 执行得更好。

于 2012-09-10T17:58:05.673 回答