f(x) = (exp(x)-1)/x;
g(x) = (exp(x)-1)/log(exp(x))
从分析上讲,f(x) = g(x)
对于所有x
.
当 x 接近 0 时,f(x)
和都g(x)
接近 1。
% Compute y against x
for k = 1:15
x(k) = 10^(-k);
f(k) =(exp(x(k))-1)/x(k);
De(k) = log(exp(x(k)));
g(k)= (exp(x(k))-1)/De(k);
end
% Plot y
plot(1:15,f,'r',1:15,g,'b');
但是,g(x)
效果比f(x)
. f(x)
当接近 0 时实际上是发散的。x
为什么g(x)
优于f(x)
?