我正在学习排序算法,下一步,我试图让我的实现接近std::sort()
. 到目前为止,我还很远.. :-)
我有 3 个快速排序的实现:
- 标准快速排序(使用临时数组)。
- 具有以下优化的快速排序:
- 中位数3用于选择中位数
- 尾递归
- 快速排序仅适用于小于 16 的分区大小。对于较小的分区,使用插入排序。
- 插入排序一次应用于整个数组,而不是应用于每个分区,快速排序未排序。
- 具有上面列出的所有优化 + 就地分区(无临时数组)的快速排序。
我希望性能最好是自下而上,但最好是自上而下!
我的实施有什么问题?鉴于性能之间的巨大差异,我认为这是完全错误的。
一些数字可以让您了解情况有多糟糕(N = 数组中的元素数,数字是每个算法所花费的时间,以微秒为单位):排序vector<int>
并且每个算法都给出完全相同的数字序列。
N quick mixed mixed_inplace
8 0 0 0
16 0 1 1
32 1 2 2
64 1 3 3
128 1 8 8
256 3 16 17
512 6 34 41
1,024 16 84 87
2,048 28.3 177.1 233.2
4,096 48.5 366.6 410.1
8,192 146.5 833.5 1,012.6
16,384 408.4 1,855.6 1,964.2
32,768 1,343.5 3,895.0 4,241.7
65,536 2,661.1 7,927.5 8,757.8
使用 Visual Studio Express 2010。
代码:
// ------------ QUICK SORT ------------------
template<typename T, typename key_compare>
void quicksort( T first, T last, const size_t pivot_index, key_compare comp ) {
T saved_first = first;
size_t N = last - first;
if (N > 1) {
// create a temp new array, which contains all items less than pivot
// on left and greater on right. With pivot value in between.
// vector<typename decltype(*T)> temp(N);
typename iterator_traits<T>::pointer temp = (typename iterator_traits<T>::pointer) malloc(sizeof(T)*N);
size_t left_index = 0, right_index = N - 1 ;
iterator_traits<T>::value_type pivot_val = *(first + pivot_index);
for(; first < saved_first + pivot_index; first++) {
if( !comp(*first, pivot_val) )
temp[right_index--] = *first;
else
temp[left_index++] = *first;
}
// skip the pivot value
// TODO: swap the pivot to end so we can have a single loop instead.
++first;
// do the rest
for(; first < last; first++) {
if( !comp(*first, pivot_val) )
temp[right_index--] = *first;
else
temp[left_index++] = *first;
}
if( right_index == left_index )
temp[left_index] = pivot_val;
else
temp[left_index+1] = pivot_val;
// recurse for left and right..
quicksort(temp, temp+left_index, left_index/2, comp);
quicksort(temp+left_index+1, temp+N, (N-right_index)/2, comp);
// return a concat'd array..
for(size_t i = 0; i < N; i++)
*saved_first++ = temp[i];
free(temp);
}
}
/*
** best, average, worst: n log n, n log n, n^2
** space: log n
*/
template<typename T, typename key_compare >
void quicksort( T first, T last, key_compare comp ) {
size_t pivot_index = (last - first) / 2;
quicksort( first, last, pivot_index, comp);
}
// ------------ QUICK with optimizations ------------------
/*
quicksort partition on range [first, last[ using predicate function as the comparator.
"mid" is in-out param, function uses mid as mid, and updates it before returning it with
current/new mid position after partitioning.
*/
template<typename T, typename key_compare >
void _partial_quicksort_partition( T first, T last, T& mid, key_compare comp ) {
T savedFirst = first;
typedef typename iterator_traits<T>::value_type _val_type;
size_t N = last - first;
_val_type *temp = (_val_type *) malloc((N*sizeof(_val_type)));
// move pivot to the end..
_val_type pivot_val = *mid;
std::swap(*mid, *(last - 1));
size_t left_index = 0, right_index = N - 1;
for( ; first != last - 1; first++ ) {
if( !comp(*first, pivot_val) )
temp[right_index--] = *first;
else
temp[left_index++] = *first;
}
assert( right_index == left_index );
temp[left_index] = pivot_val;
std::copy(temp, temp+N, savedFirst);
free(temp);
mid = savedFirst + left_index;
}
template<typename T, typename key_compare >
void _partial_quicksort( T first, T last, key_compare comp ) {
size_t s = last - first;
// sort only if the list is smaller than our limit.. else it's too small for
// us to bother.. caller would take care of it using some other stupid algo..
if( 16 > s ) {
// only one call to insertion_sort(), after whole array is partially sorted
// using quicksort().
// my_insertion_sort::insertion_sort(first, last, pred);
return ;
}
// select pivot.. use median 3
T mid = my_mixed_inplace_quicksort::median3(first, last - 1, s, comp);
// partition
_partial_quicksort_partition(first, last, mid, comp);
// recurse..
_partial_quicksort(first, mid, comp);
// tail recurse..
// TODO: tail recurse on longer partition..
_partial_quicksort(mid+1, last, comp);
}
template<typename T, typename key_compare >
void mixed_quicksort( T first, T last, key_compare pred ) {
_partial_quicksort(first, last, pred );
my_insertion_sort::insertion_sort(first, last, pred);
}
// ------------ "in place" QUICK with optimizations ------------------
/*
in place quicksort partition on range [first, last[ using predicate function as the comparator.
"mid" is in-out param, function uses mid as mid, and updates it before returning it with
current/new mid position after partitioning.
*/
template<typename T, typename key_compare >
void _partial_inplace_quicksort_partition( T first, T last, T& mid, key_compare comp ) {
typename iterator_traits<T>::value_type midVal = *mid;
// move pivot to end..
std::swap(*mid, *(last - 1));
mid = first;
// in-place quick sort:
for( ; first < last - 1; first++ ) {
if( comp(*first, midVal) ) {
std::swap(*first, *mid);
mid++;
}
}
// bring pivot to the mid..
std::swap(*mid, *(last - 1));
}
// brings best median to middle and returns it..
// works on array as [first, last] NOT [first, last[
template<typename T, typename key_compare >
T median3(T first, T last, size_t size, key_compare comp ) {
T mid = first + size/2;
if (comp(*mid, *first)) {
std::swap(*mid, *first);
}
if (comp(*last, *mid)) {
std::swap(*last, *mid);
}
if (comp(*mid, *first)) {
std::swap(*mid, *first);
}
return mid;
}
template<typename T, typename key_compare >
void _partial_inplace_quicksort( T first, T last, key_compare comp ) {
size_t s = last - first;
// sort only if the list is smaller than our limit.. else it's too small for
// us to bother.. caller would take care of it using some other stupid algo..
if( 16 > s ) {
// only one call to insertion_sort(), after whole array is partially sorted
// using quicksort().
// my_insertion_sort::insertion_sort(first, last, pred);
return ;
}
// select pivot.. use median 3
T mid = median3(first, last - 1, s, comp);
// partition
_partial_inplace_quicksort_partition(first, last, mid, comp);
// recurse..
_partial_inplace_quicksort(first, mid, comp);
// tail recurse..
_partial_inplace_quicksort(mid+1, last, comp);
// print_array(first, last, "_partial_inplace_quicksort(exit2)" );
}
// in-place quick sort
// tail recurse
// median
// final insertion sort..
template<typename T, typename key_compare >
void mixedsort_inplace( T first, T last, key_compare pred ) {
_partial_inplace_quicksort(first, last, pred );
my_insertion_sort::insertion_sort(first, last, pred);
}
// ---------------- INSERTION SORT used above ----------------
namespace my_insertion_sort {
template<typename T, typename key_compare>
void insertion_sort( T first, T last, key_compare comp ) {
// for each element in the array [first+1, last[
for( T j = first+1; j < last; j++) {
iterator_traits<T>::value_type curr = *j;
T hole = j;
// keep moving all the elements comp(hole.e. > or <) hole to right
while( hole > first && comp(curr, *(hole-1)) ) {
*hole = *(hole-1);
--hole;
}
// insert curr at the correct position.
*hole = curr;
}
}
}
用于测试的代码:
#include <ctime>
#ifdef _WIN32
#include <Windows.h>
#include <WinBase.h>
#endif // _WIN32
template<typename T, typename key_compare = std::less<T>> class MySortAlgoTester;
template <typename T>
void print_array( T begin, T end, string prefix = "" ) {
cout << prefix.c_str();
for_each(begin, end, []( typename std::iterator_traits<T>::reference it) { cout << it << ','; } );
cout << endl;
}
int main () {
srand(123456789L);
size_t numElements = 4;
vector<char*> algoNames;
map<double, vector<double>> results;
int numTests = 0;
while( (numElements *= 2) <= 4096*16 ) {
MySortAlgoTester<int> tester(numElements);
results[numElements] = vector<double>();
algoNames.push_back("mixedsort_inplace");
results[numElements].push_back(tester.test(my_mixed_inplace_quicksort::mixedsort_inplace, "mixedsort_inplace"));
tester.reset();
algoNames.push_back("quick");
results[numElements].push_back(tester.test(my_quicksort::quicksort, "quicksort"));
tester.reset();
algoNames.push_back("mixed_quicksort");
results[numElements].push_back(tester.test(my_mixed_quicksort::mixed_quicksort, "mixed_quicksort"));
}
// --- print the results...
cout << std::setprecision(2) << std::fixed << endl << "N";
for_each(algoNames.begin(), algoNames.begin()+(algoNames.size()/numTests), [](char* s){cout << ',' << s ;} );
typedef std::pair<double,vector<double>> result_iter;
BOOST_FOREACH(result_iter it, results) {
cout << endl << it.first << ',';
BOOST_FOREACH( double d, it.second ) {
cout << d << ',' ;
}
}
template<typename T, typename key_compare = std::less<T>>
class MySortAlgoTester {
key_compare comp;
vector<T> vec;
typedef typename vector<T>::iterator vecIter;
vector<T> vec_copy;
size_t m_numElements;
bool is_sorted(vecIter first, vecIter last) {
vecIter sFirst = first;
for(vecIter next = first+1; next != last;)
// '>' associativity: left to right
// ++ has precedence over >
if( !comp(*(first++), *(next++)) ) {
if(*(next-1) == *(first-1))
continue;
print_array(sFirst, last, "is_sorted() returning false: ");
cout << "comp(" << *(first-1) << ", " << *(next-1) << ") = false && "
<< *(next-1) << " != " << *(first-1) << endl ;
return false;
}
return true;
}
public:
MySortAlgoTester(size_t numElements) : m_numElements(numElements) {
srand(123456789L);
vec.resize(m_numElements);
vec_copy.resize(m_numElements);
// std::generate(vec.begin(), vec.end(), rand);
for(size_t i = 0; i < vec.size(); i++) {
vec[i] = rand() % (m_numElements * 2);
vec_copy[i] = vec[i];
}
}
~MySortAlgoTester() {
}
void reset() {
// copy the data back so next algo can be tested with same array.
std::copy(vec_copy.begin(), vec_copy.end(), vec.begin());
for(size_t i = 0; i < vec_copy.size(); i++) {
vec[i] = vec_copy[i];
}
// std::copy(vec_copy.begin(), vec_copy.end(), vec);
}
double m___start_time_asdfsa = 0;
double getTimeInMicroSecs() {
#ifdef _WIN32
LARGE_INTEGER li;
if(!QueryPerformanceFrequency(&li))
cout << "getTimeInMicroSecs(): QueryPerformanceFrequency() failed!" << endl;
QueryPerformanceCounter(&li);
return double(li.QuadPart)/1000.0;
#else // _WIN32
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec + 10e6 * tv.tv_sec;
}
#endif // _WIN32
inline void printClock( const char* msg ) {
cout << msg << (long)(getTimeInMicroSecs() - m___start_time_asdfsa) << " micro seconds" << endl;
}
inline double getClock() {
return (getTimeInMicroSecs() - m___start_time_asdfsa);
}
inline void startClock() {
m___start_time_asdfsa = getTimeInMicroSecs();
}
double test( void (*sort_func)(typename vector<T>::iterator first, typename vector<T>::iterator last, typename key_compare pred), const char* name ) {
cout << "START Testing: " << name << ". With --- " << m_numElements << " elements." << endl;
startClock();
sort_func(vec.begin(), vec.end(), comp);
double ms = getClock();
if(!MySortAlgoTester::is_sorted(vec.begin(), vec.end())) {
cout << name << " did not sort the array." << endl;
// throw string(name) + " did not sort the array.";
}
cout << "DONE Testing: " << name << ". Time taken (ms): " << ms << endl;
return ms;
}
double test( void (*sort_func)(typename vector<T>::iterator first, typename vector<T>::iterator last), const char* name ) {
cout << "START Testing: " << name << ". With --- " << m_numElements << " elements." << endl;
startClock();
sort_func(vec.begin(), vec.end());
double ms = getClock();
if(!MySortAlgoTester::is_sorted(vec.begin(), vec.end())) {
cout << name << " did not sort the array." << endl;
// throw string(name) + " did not sort the array.";
}
cout << "DONE Testing: " << name << ". Time taken (ms): " << ms << endl;
return ms;
}
};