我不完全清楚你想要什么,但我会试一试。
让我们创建一些示例数据。请注意,我使用的是 amatrix
而不是 a data.frame
。现在不需要显式迭代列名,大大简化了代码。
m = matrix(runif(100), 10, 10)
apply(m, 2, hpfilter)
并介绍一些NA
价值观:
m[sample(1:10, 2), sample(1:10, 2)] <- NA
apply(m, 2, hpfilter)
我相信,对函数进行调整会hpfilter
产生结果,您正在寻找:
hpfilter = function(x,lambda=1600, na.omit = TRUE) {
if(na.omit) {
na_values = is.na(x)
if(any(na_values)) x = x[-which(na_values)]
}
eye <- diag(length(x))
result <- solve(eye+lambda*crossprod(diff(eye,lag=1,d=2)),x)
for(idx in which(na_values)) result = append(result, NA, idx - 1) # reinsert NA values
return(result)
}
本质上,NA
's 被从数据集中删除。然后高通滤波器基于 周围的值NA
,例如下一小时或前一小时。后来NA
又重新引入了's。如果这是您要处理的方式,您需要仔细考虑NA
。如果有大量连续NA
的 ',则开始将高通滤波器应用于相距较远的时间序列片段。
输出:
> m
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.3492249 0.13243768 NA 0.302102537 0.4229100 0.5922950
[2,] 0.2933371 0.20001802 0.03145775 0.429109073 0.9597172 0.9490127
[3,] 0.7040072 0.49672438 0.22093906 0.323518480 0.4842678 0.4081306
[4,] 0.9072993 0.86930200 0.52859786 0.122859661 0.1841663 0.5389729
[5,] 0.3236061 0.38602856 0.46249498 0.866068888 0.6981199 0.9766099
[6,] 0.4878379 0.31511419 NA 0.807535084 0.6563737 0.0419552
[7,] 0.3244131 0.34287848 0.31360175 0.821228400 0.5989790 0.6631735
[8,] 0.3758025 0.39728965 0.64960319 0.283663049 0.9054992 0.8160815
[9,] 0.4485784 0.06440579 0.67518605 0.815575767 0.1479089 0.6391120
[10,] 0.9061172 0.16812244 0.86293095 0.005075972 0.6736308 0.7574890
[,7] [,8] [,9] [,10]
[1,] NA 0.02125704 0.7029417 0.490146887
[2,] 0.353827474 0.40482437 0.2102700 0.351850122
[3,] 0.778491744 0.32676623 0.6709055 0.953126856
[4,] 0.825446342 0.24411303 0.4939415 0.026877439
[5,] 0.264156057 0.30620799 0.0474103 0.505411467
[6,] NA 0.63995093 0.6155766 0.736349958
[7,] 0.048948805 0.96751061 0.9697167 0.005304793
[8,] 0.733419331 0.85554984 0.7438209 0.581133546
[9,] 0.823691194 0.74550281 0.0635690 0.903188495
[10,] 0.009001798 0.74201923 0.3516963 0.904093070
> apply(m, 2, hpfilter)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.4337716 0.4101083 NA 0.4239194 0.5762643 0.6178718 NA
[2,] 0.4512989 0.3950404 0.1219334 0.4367185 0.5756097 0.6219962 0.5909609
[3,] 0.4687735 0.3797990 0.2209373 0.4494414 0.5748593 0.6261047 0.5593590
[4,] 0.4860436 0.3640885 0.3198847 0.4620073 0.5741572 0.6303856 0.5276089
[5,] 0.5031048 0.3476868 0.4187190 0.4742566 0.5735911 0.6348910 0.4956993
[6,] 0.5202157 0.3306871 NA 0.4858177 0.5730049 0.6396161 NA
[7,] 0.5375230 0.3132068 0.5175141 0.4965640 0.5723201 0.6447694 0.4638051
[8,] 0.5551529 0.2953536 0.6163712 0.5065697 0.5715107 0.6501860 0.4319566
[9,] 0.5730986 0.2772537 0.7152643 0.5161124 0.5705671 0.6557125 0.3999246
[10,] 0.5912411 0.2590969 0.8141878 0.5253298 0.5696884 0.6612990 0.3676684
[,8] [,9] [,10]
[1,] 0.1423571 0.5362741 0.3871990
[2,] 0.2276829 0.5253623 0.4217619
[3,] 0.3129329 0.5145546 0.4563892
[4,] 0.3981423 0.5037583 0.4911015
[5,] 0.4833547 0.4929783 0.5262298
[6,] 0.5685175 0.4822135 0.5618152
[7,] 0.6534674 0.4711843 0.5978857
[8,] 0.7380857 0.4596942 0.6345782
[9,] 0.8224501 0.4478587 0.6716594
[10,] 0.9067115 0.4359704 0.7088627