在给定素数的情况下生成一个数的所有因数:
#!/usr/bin/env python
import itertools, operator
def all_factors(prime_dict):
series = [[p**e for e in range(maxe+1)] for p, maxe in prime_dict.items()]
for multipliers in itertools.product(*series):
yield reduce(operator.mul, multipliers)
例子
prime_dict = {2:3, 3:1, 5:2}
L = sorted(all_factors(prime_dict))
number_of_divisors = reduce(lambda prod, e: prod*(e+1), prime_dict.values(),1)
assert len(L) == number_of_divisors
# -> [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24,
# 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600]
产生对:
n, isodd = divmod(len(L), 2)
print(zip(L[:n], reversed(L[n + isodd:])))
if isodd: # number is perfect square
print((L[n], L[n]))
输出
[(1, 600), (2, 300), (3, 200), (4, 150), (5, 120), (6, 100),
(8, 75), (10, 60), (12, 50), (15, 40), (20, 30), (24, 25)]
它适用于小数字。您可以使用它来测试您的解决方案,该解决方案可能会考虑到您的数字的特殊形式:x00000...