我试图了解 OpenCV fitLine()算法。
这是来自 OpenCV 的代码片段:
icvFitLine2D
函数 - icvFitLine2D
我看到有一些随机函数选择近似点,然后计算从点到拟合线的距离(使用选择的点),然后选择其他点并尝试使用 choosen 最小化距离distType
。
有人可以澄清从这一刻起会发生什么,而无需经过严格的数学运算并假设没有出色的统计知识吗?OpenCV 代码注释和变量名并不能帮助我理解这段代码。
我试图了解 OpenCV fitLine()算法。
这是来自 OpenCV 的代码片段:
icvFitLine2D
函数 - icvFitLine2D
我看到有一些随机函数选择近似点,然后计算从点到拟合线的距离(使用选择的点),然后选择其他点并尝试使用 choosen 最小化距离distType
。
有人可以澄清从这一刻起会发生什么,而无需经过严格的数学运算并假设没有出色的统计知识吗?OpenCV 代码注释和变量名并不能帮助我理解这段代码。
(这是一个老问题,但这个话题激起了我的好奇心)
OpenCVFitLine
实现了两种不同的机制。
如果参数distType
设置为CV_DIST_L2
,则使用标准的未加权最小二乘拟合。
如果distTypes
使用其中之一(CV_DIST_L1
, CV_DIST_L12
, CV_DIST_FAIR
, CV_DIST_WELSCH
, CV_DIST_HUBER
),则该过程是某种RANSAC拟合:
distType
这是伪代码中更详细的描述:
repeat at most 20 times:
RANSAC (line 371)
- pick 10 random points,
- set their weights to 1,
- set all other weights to 0
least squares weighted fit (fitLine2D_wods, line 381)
- fit only the 10 picked points to the line, using least-squares
repeat at most 30 times: (line 382)
- stop if the difference between the found solution and the previous found solution is less than DELTA (line 390 - 406)
(the angle difference must be less than adelta, and the distance beween the line centers must be less than rdelta)
- stop if the sum of squared distances between the found line and the points is less than EPSILON (line 407)
(The unweighted sum of squared distances is used here ==> the standard L2 norm)
re-calculate the weights for *all* points (line 412)
- using the given norm (CV_DIST_L1 / CV_DIST_L12 / CV_DIST_FAIR / ...)
- normalize the weights so their sum is 1
- special case, to catch errors: if for some reason all weights are zero, set all weight to 1
least squares weighted fit (fitLine2D_wods, line 437)
- fit *all* points to the line, using weighted least squares
if the last found solution is better than the current best solution (line 440)
save it as the new best
(The unweighted sum of squared distances is used here ==> the standard L2 norm)
if the distance between the found line and the points is less than EPSILON
break
return the best solution
权重的计算取决于所选的distType
,根据手册的公式是weight[Point_i] = 1/ p(distance_between_point_i_and_line)
,其中 p 是:
distType=CV_DIST_L1
distType=CV_DIST_L12
distType=CV_DIST_FAIR
distType=CV_DIST_WELSCH
distType=CV_DIST_HUBER
不幸的是,我不知道哪种distType
数据最适合哪种数据,也许其他人可以对此有所了解。
我注意到一些有趣的事情:选择的范数仅用于迭代重新加权,找到的最佳解决方案总是根据 L2 范数选择(未加权最小二乘和最小的线)。我不确定这是否正确。