我正在尝试运行电子书 Mahout in Action 中第 6 章(清单 6.1 ~ 6.4)中的推荐示例。有两个映射器/缩减器对。这是代码:
映射器 - 1
public class WikipediaToItemPrefsMapper extends
Mapper<LongWritable,Text,VarLongWritable,VarLongWritable> {
private static final Pattern NUMBERS = Pattern.compile("(\d+)");
@Override
public void map(LongWritable key,
Text value,
Context context)
throws IOException, InterruptedException {
String line = value.toString();
Matcher m = NUMBERS.matcher(line);
m.find();
VarLongWritable userID = new VarLongWritable(Long.parseLong(m.group()));
VarLongWritable itemID = new VarLongWritable();
while (m.find()) {
itemID.set(Long.parseLong(m.group()));
context.write(userID, itemID);
}
}
}
减速机 - 1
public class WikipediaToUserVectorReducer extends
Reducer<VarLongWritable,VarLongWritable,VarLongWritable,VectorWritable> {
@Override
public void reduce(VarLongWritable userID,
Iterable<VarLongWritable> itemPrefs,
Context context)
throws IOException, InterruptedException {
Vector userVector = new RandomAccessSparseVector(
Integer.MAX_VALUE, 100);
for (VarLongWritable itemPref : itemPrefs) {
userVector.set((int)itemPref.get(), 1.0f);
}
//LongWritable userID_lw = new LongWritable(userID.get());
context.write(userID, new VectorWritable(userVector));
//context.write(userID_lw, new VectorWritable(userVector));
}
}
reducer 输出一个 userID 和一个 userVector,它看起来像这样: 98955 {590:1.0 22:1.0 9059:1.0 3:1.0 2:1.0 1:1.0} 在驱动程序中使用了 FileInputformat 和 TextInputFormat。
我想使用另一对 mapper-reducer 来进一步处理这些数据:
映射器 - 2
public class UserVectorToCooccurenceMapper extends
Mapper<VarLongWritable,VectorWritable,IntWritable,IntWritable> {
@Override
public void map(VarLongWritable userID,
VectorWritable userVector,
Context context)
throws IOException, InterruptedException {
Iterator<Vector.Element> it = userVector.get().iterateNonZero();
while (it.hasNext()) {
int index1 = it.next().index();
Iterator<Vector.Element> it2 = userVector.get().iterateNonZero();
while (it2.hasNext()) {
int index2 = it2.next().index();
context.write(new IntWritable(index1),
new IntWritable(index2));
}
}
}
}
减速机 - 2
公共类 UserVectorToCooccurenceReducer 扩展 Reducer {
@Override
public void reduce(IntWritable itemIndex1,
Iterable<IntWritable> itemIndex2s,
Context context)
throws IOException, InterruptedException {
Vector cooccurrenceRow = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
for (IntWritable intWritable : itemIndex2s) {
int itemIndex2 = intWritable.get();
cooccurrenceRow.set(itemIndex2, cooccurrenceRow.get(itemIndex2) + 1.0);
}
context.write(itemIndex1, new VectorWritable(cooccurrenceRow));
}
}
这是我正在使用的驱动程序:
public final class RecommenderJob extends Configured implements Tool {
@Override public int run(String[] args) 抛出异常 {
Job job_preferenceValues = new Job (getConf());
job_preferenceValues.setJarByClass(RecommenderJob.class);
job_preferenceValues.setJobName("job_preferenceValues");
job_preferenceValues.setInputFormatClass(TextInputFormat.class);
job_preferenceValues.setOutputFormatClass(SequenceFileOutputFormat.class);
FileInputFormat.setInputPaths(job_preferenceValues, new Path(args[0]));
SequenceFileOutputFormat.setOutputPath(job_preferenceValues, new Path(args[1]));
job_preferenceValues.setMapOutputKeyClass(VarLongWritable.class);
job_preferenceValues.setMapOutputValueClass(VarLongWritable.class);
job_preferenceValues.setOutputKeyClass(VarLongWritable.class);
job_preferenceValues.setOutputValueClass(VectorWritable.class);
job_preferenceValues.setMapperClass(WikipediaToItemPrefsMapper.class);
job_preferenceValues.setReducerClass(WikipediaToUserVectorReducer.class);
job_preferenceValues.waitForCompletion(true);
Job job_cooccurence = new Job (getConf());
job_cooccurence.setJarByClass(RecommenderJob.class);
job_cooccurence.setJobName("job_cooccurence");
job_cooccurence.setInputFormatClass(SequenceFileInputFormat.class);
job_cooccurence.setOutputFormatClass(TextOutputFormat.class);
SequenceFileInputFormat.setInputPaths(job_cooccurence, new Path(args[1]));
FileOutputFormat.setOutputPath(job_cooccurence, new Path(args[2]));
job_cooccurence.setMapOutputKeyClass(VarLongWritable.class);
job_cooccurence.setMapOutputValueClass(VectorWritable.class);
job_cooccurence.setOutputKeyClass(IntWritable.class);
job_cooccurence.setOutputValueClass(VectorWritable.class);
job_cooccurence.setMapperClass(UserVectorToCooccurenceMapper.class);
job_cooccurence.setReducerClass(UserVectorToCooccurenceReducer.class);
job_cooccurence.waitForCompletion(true);
return 0;
}
public static void main(String[] args) throws Exception {
ToolRunner.run(new Configuration(), new RecommenderJob(), args);
} }
我得到的错误是:
java.io.IOException: Type mismatch in key from map: expected org.apache.mahout.math.VarLongWritable, received org.apache.hadoop.io.IntWritable
在谷歌搜索修复过程中,我发现我的问题类似于这个问题。但不同之处在于我已经在使用 SequenceFileInputFormat 和 SequenceFileOutputFormat,我相信是正确的。我还看到 org.apache.mahout.cf.taste.hadoop.item.RecommenderJob 或多或少做了类似的事情。在我的理解和雅虎教程中
SequenceFileOutputFormat 快速将任意数据类型序列化到文件中;对应的 SequenceFileInputFormat 会将文件反序列化为相同的类型,并以与前一个 Reducer 发出的相同方式将数据呈现给下一个 Mapper。
我究竟做错了什么?真的很感谢某人的一些指点。我花了一天时间试图解决这个问题,但一无所获:(