I want to create a histogram for an green component of an image in c++ using OpenCV. The following code is working fine for color image but once i split the image into its RGB component and using the green component to call calcHist function, I am getting the following error.
OpenCV Error: Assertion failed (j < nimages) in histPrepareImages, file /root/src/OpenCV-2.4.1/modules/imgproc/src/histogram.cpp, line 148 terminate called after throwing an instance of 'cv::Exception' what(): /root/src/OpenCV-2.4.1/modules/imgproc/src/histogram.cpp:148: error: (-215) j < nimages in function histPrepareImages Aborted (core dumped)
Here is my code for the same. I took two images to create the histogram. Anyone pls help so solve this problem.
#include <cv.h>
#include <highgui.h>
using namespace cv;
int main( int argc, char** argv )
{
Mat src,src1, hsv, hsv1;
if( argc != 3 || !(src=imread(argv[1], 1)).data || !(src=imread(argv[2], 1)).data)
return -1;
std::vector<cv::Mat> three_channels;
cv::split(src,three_channels);
std::vector<cv::Mat> three_channels1;
cv::split(src1,three_channels1);
//cvtColor(src, hsv, CV_BGR2HSV);
//cvtColor(src1, hsv1, CV_BGR2HSV);
// Quantize the hue to 30 levels
// and the saturation to 32 levels
int hbins = 30, sbins = 32;
int histSize[] = {hbins, sbins};
// hue varies from 0 to 179, see cvtColor
float hranges[] = { 0, 180 };
// saturation varies from 0 (black-gray-white) to
// 255 (pure spectrum color)
float sranges[] = { 0, 256 };
const float* ranges[] = { hranges, sranges };
MatND hist, hist1, difference;
// we compute the histogram from the 0-th and 1-st channels
int channels[] = {0, 1};
calcHist( &three_channels[1], 1, channels, Mat(), // do not use mask
hist, 2, histSize, ranges,
true, // the histogram is uniform
false );
calcHist( &three_channels1[1], 1, channels, Mat(), // do not use mask
hist1, 2, histSize, ranges,
true, // the histogram is uniform
false );
double maxVal=0;
minMaxLoc(hist, 0, &maxVal, 0, 0);
minMaxLoc(hist1, 0, &maxVal, 0, 0);
int scale = 10;
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
Mat hist1Img = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
Mat hist2Img = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
double hist_diff =0;
hist_diff = compareHist(hist, hist1, CV_COMP_CORREL);
absdiff(hist, hist1, difference);
printf("\nHist Diff: %f\n", hist_diff);
for( int h = 0; h < hbins; h++ )
for( int s = 0; s < sbins; s++ )
{
float binVal = hist.at<float>(h, s);
int intensity = cvRound(binVal*255/maxVal);
rectangle( histImg, Point(h*scale, s*scale),
Point( (h+1)*scale - 1, (s+1)*scale - 1),
Scalar::all(intensity),
CV_FILLED );
}
for( int h = 0; h < hbins; h++ )
for( int s = 0; s < sbins; s++ )
{
float binVal = hist1.at<float>(h, s);
int intensity = cvRound(binVal*255/maxVal);
rectangle( hist1Img, Point(h*scale, s*scale),
Point( (h+1)*scale - 1, (s+1)*scale - 1),
Scalar::all(intensity),
CV_FILLED );
}
for( int h = 0; h < hbins; h++ )
for( int s = 0; s < sbins; s++ )
{
float binVal = difference.at<float>(h, s);
int intensity = cvRound(binVal*255/maxVal);
rectangle( hist2Img, Point(h*scale, s*scale),
Point( (h+1)*scale - 1, (s+1)*scale - 1),
Scalar::all(intensity),
CV_FILLED );
}
namedWindow( "Source", 1 );
imshow( "Source", src );
namedWindow( "H-S Histogram", 1 );
imshow( "H-S Histogram", histImg );
namedWindow( "H-S Histogram1", 1 );
imshow( "H-S Histogram1", hist1Img );
namedWindow( "H-S Histogram2", 1 );
imshow( "H-S Histogram2", hist2Img );
waitKey();
}