这是一个函数,您可以使用它来过滤带有 NA 的信号。NA 被忽略而不是被零替换。
然后,您可以指定 NA 在滤波信号的任何点上可能占据的最大权重百分比。如果某个特定点的 NA 太多(而实际数据太少),则滤波后的信号本身将设置为 NA。
# This function applies a filter to a time series with potentially missing data
filter_with_NA <- function(x,
window_length=12, # will be applied centrally
myfilter=rep(1/window_length,window_length), # a boxcar filter by default
max_percentage_NA=25) # which percentage of weight created by NA should not be exceeded
{
# make the signal longer at both sides
signal <- c(rep(NA,window_length),x,rep(NA,window_length))
# see where data are present and not NA
present <- is.finite(signal)
# replace the NA values by zero
signal[!is.finite(signal)] <- 0
# apply the filter
filtered_signal <- as.numeric(filter(signal,myfilter, sides=2))
# find out which percentage of the filtered signal was created by non-NA values
# this is easy because the filter is linear
original_weight <- as.numeric(filter(present,myfilter, sides=2))
# where this is lower than one, the signal is now artificially smaller
# because we added zeros - compensate that
filtered_signal <- filtered_signal / original_weight
# but where there are too few values present, discard the signal
filtered_signal[100*(1-original_weight) > max_percentage_NA] <- NA
# cut away the padding to left and right which we previously inserted
filtered_signal <- filtered_signal[((window_length+1):(window_length+length(x)))]
return(filtered_signal)
}