1

我有一个看起来像这样的语法规则:

rule<Iterator, utree()> expr, factor;

expr =
    (
       +(
           (
              toks.symbol // toks.symbol attribute type is an std::string
              [
                 // I'm trying to force the attribute type to be utree
                 _val = construct<utree::list_type>()
                 // some code here
              ]
           |  (
                 factor >>
                +(
                    // the 3 tokens here have unsigned long attribute
                    toks.arrow >> factor
                 |  toks.squiggleArrow >> factor
                 |  toks.dot >> factor
                 )
              )
              [

                 // I'm trying to force the attribute type to be utree
                 _val = construct<utree::list_type>()
                 // some code here
              ]
           ) >> toks.assign // toks.assign is token_def<omit>
        ) >> factor
     ) [ _val = ternary(_1, _2) ]
   ;

据我了解:

http://boost-spirit.com/home/articles/attribute_handling/attribute-propagation-and-attribute-compatibility/

在这种情况下应该禁用属性兼容性,因为存在语义操作。尽管如此,我在 ternary() 中看到了一个编译错误,这表明 _1 的类型不是我所期望的向量,而是:

vector<
    variant<std::string,
            fusion::vector2<utree,
                            fusion::vector2<long unsigned int, utree>
                           >
           >
       >

这意味着由于某种原因,语义动作没有起作用!

任何提示为什么会发生这种情况?

注意:我在此处粘贴了一个显示问题的最小化示例:

http://pastebin.com/rgiy2QBW

谢谢!

4

1 回答 1

3

编译器抱怨的赋值在ternaryImpl::operator()主体内部,这意味着,很明显,语义动作确实起作用了!

现在,尽管 SA 阻止自动属性传播是正确的(除非运算符 %= 用于规则分配),但这并不意味着原始解析器公开的类型会神奇地改变。

您在问题中列出的类型准确地反映了解析器表达式/运算符将返回的内容:

  • Or ( |) 解析成一个变体
  • Sequence ( >>) 解析为fusion::vector2<...>等。

现在,这是我进行编译的简单、最小的更改。确切地说,诀窍是通过使用显式属性类型拆分子规则来使属性分配您工作。这允许 Spirit 为您进行属性转换。

struct Parser: public qi::grammar<Iterator, utree()>
{
    template <typename Tokens>
        Parser(const Tokens &toks):
            Parser::base_type(expression)
    {
        chain = +(
            (
               toks.symbol
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            |  (
                  factor >>
                 +(
                     toks.arrow >> factor
                  |  toks.dot >> factor
                  )
               )
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            ) >> toks.assign
         );
        expression = factor
            | (chain >> factor) [ _val = ternary(_1, _2) ]
            ;
    }

   rule<Iterator, utree::list_type()> chain;
   rule<Iterator, utree()> expression, factor, test;
};

注意如果你想要你应该能够在没有额外规则定义的情况下做同样的事情(使用qi::attr_cast<>qi::as<>例如),但我怀疑它是否可读/可维护。

PS。类似的点可以从它,必然地,拼写比使用 SA 的版本calc_utree_naive.cpp更明确的规则属性类型。calc_utree_ast.cpp

这是完整的编译版本,注释中有一些内联注释:

// #define BOOST_SPIRIT_USE_PHOENIX_V3
// #define BOOST_RESULT_OF_USE_DECLTYPE
#include <algorithm>
#include <string>
#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/support_utree.hpp>
#include <boost/spirit/include/phoenix_function.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>

namespace lex    = boost::spirit::lex;
namespace qi     = boost::spirit::qi;
namespace spirit = boost::spirit;
namespace phx    = boost::phoenix;

using lex::token_def;
using qi::rule;
using qi::_1;
using qi::_2;
using qi::_val;
using spirit::utree;
using phx::construct;

// base iterator type
typedef std::string::iterator BaseIteratorT;

// token type
typedef lex::lexertl::token<BaseIteratorT, boost::mpl::vector</*double, int, */std::string> > TokenT;

// lexer type
typedef lex::lexertl::actor_lexer<TokenT> LexerT;

template <typename LexerT>
struct Tokens: public lex::lexer<LexerT>
{
   Tokens()
   {
      using lex::_pass;
      using lex::pass_flags;

      // literals
      symbol = "[a-zA-Z_?](\\w|\\?)*|@(\\w|\\?)+";
      arrow  = "->";
      dot    = '.';
      assign = "=";

      // literal rules
      this->self += symbol;
      this->self += arrow;
      this->self += dot;
      this->self += assign;
   }

   ~Tokens() {}

   // literal tokens
   token_def<std::string> symbol;
   token_def<> arrow, dot; // HINT: lex::omit here? 
   /*
    * ^ Otherwise, expect these to be all exposed as Qi attributes as well, so
    * _1, _2, _3, _4 a bit more than you'd expect
    */
   token_def<lex::omit> assign;
};

struct ternaryImpl
{
   template <typename Expr1Type, typename Expr2Type>
   struct result { typedef utree type; };

   template <typename Expr1Type, typename Expr2Type>
   utree operator()(Expr1Type &vec, Expr2Type &operand) const {
      utree ret;

      for (typename Expr1Type::iterator it = vec.begin(); it != vec.end(); ++it) {
         // some code
         ret = *it;
         // more code
      }

      // some code here

      return ret;
   }
};

phx::function<ternaryImpl> ternary = ternaryImpl();

template <typename Iterator>
struct Parser: public qi::grammar<Iterator, utree()>
{
    template <typename Tokens>
        Parser(const Tokens &toks):
            Parser::base_type(expression)
    {
        chain = +(
            (
               toks.symbol
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            |  (
                  factor >>
                 +(
                     toks.arrow >> factor
                  |  toks.dot >> factor
                  )
               )
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            ) >> toks.assign
         );
        expression = factor
            | (chain >> factor) [ _val = ternary(_1, _2) ]
            ;
    }

   rule<Iterator, utree::list_type()> chain;
   rule<Iterator, utree()> expression, factor, test;
};

int main()
{
   typedef Tokens<LexerT>::iterator_type IteratorT;

   Tokens<LexerT> l;
   Parser<IteratorT> p(l);
}
于 2012-07-16T23:54:50.363 回答