我正在尝试安装numpy
,OpenBLAS
但是我不知道如何site.cfg
编写文件。
当按照安装过程完成安装时,安装没有错误,但是将 OpenBLAS 使用的线程数从 1 增加(由环境变量 OMP_NUM_THREADS 控制)会降低性能。
我不确定 OpenBLAS 集成是否完美。任何人都可以提供一个site.cfg
文件来实现相同的目标。
PS:OpenBLAS 与其他工具包(如基于 Python 的Theano )的集成,在同一台机器上增加线程数量时提供了显着的性能提升。
我刚刚numpy
在virtualenv
withOpenBLAS
集成中编译,它似乎工作正常。
这是我的过程:
编译OpenBLAS
:
$ git clone https://github.com/xianyi/OpenBLAS
$ cd OpenBLAS && make FC=gfortran
$ sudo make PREFIX=/opt/OpenBLAS install
如果您没有管理员权限,则可以设置PREFIX=
为您具有写入权限的目录(只需相应地修改下面的相应步骤)。
确保包含的目录libopenblas.so
位于您的共享库搜索路径中。
要在本地执行此操作,您可以编辑~/.bashrc
文件以包含该行
export LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH
当LD_LIBRARY_PATH
您启动新的终端会话时,环境变量将被更新(用于$ source ~/.bashrc
在同一会话中强制更新)。
另一个适用于多个用户的选项是创建一个包含 line的.conf
文件,例如:/etc/ld.so.conf.d/
/opt/OpenBLAS/lib
$ sudo sh -c "echo '/opt/OpenBLAS/lib' > /etc/ld.so.conf.d/openblas.conf"
完成任一选项后,运行
$ sudo ldconfig
获取numpy
源代码:
$ git clone https://github.com/numpy/numpy
$ cd numpy
复制site.cfg.example
到site.cfg
并编辑副本:
$ cp site.cfg.example site.cfg
$ nano site.cfg
取消注释这些行:
....
[openblas]
libraries = openblas
library_dirs = /opt/OpenBLAS/lib
include_dirs = /opt/OpenBLAS/include
....
检查配置、构建、安装(可选在 a 内virtualenv
)
$ python setup.py config
输出应如下所示:
...
openblas_info:
FOUND:
libraries = ['openblas', 'openblas']
library_dirs = ['/opt/OpenBLAS/lib']
language = c
define_macros = [('HAVE_CBLAS', None)]
FOUND:
libraries = ['openblas', 'openblas']
library_dirs = ['/opt/OpenBLAS/lib']
language = c
define_macros = [('HAVE_CBLAS', None)]
...
安装 with比 usingpip
更可取python setup.py install
,因为pip
它将跟踪包元数据并允许您在将来轻松卸载或升级 numpy。
$ pip install .
可选:您可以使用此脚本来测试不同线程数的性能。
$ OMP_NUM_THREADS=1 python build/test_numpy.py
version: 1.10.0.dev0+8e026a2
maxint: 9223372036854775807
BLAS info:
* libraries ['openblas', 'openblas']
* library_dirs ['/opt/OpenBLAS/lib']
* define_macros [('HAVE_CBLAS', None)]
* language c
dot: 0.099796795845 sec
$ OMP_NUM_THREADS=8 python build/test_numpy.py
version: 1.10.0.dev0+8e026a2
maxint: 9223372036854775807
BLAS info:
* libraries ['openblas', 'openblas']
* library_dirs ['/opt/OpenBLAS/lib']
* define_macros [('HAVE_CBLAS', None)]
* language c
dot: 0.0439578056335 sec
对于更高的线程数,性能似乎有了显着的提高。但是,我没有对此进行非常系统的测试,而且对于较小的矩阵,额外的开销可能会超过更高线程数带来的性能优势。
万一您使用的是 ubuntu 或 mint,您可以通过 apt-get as 同时安装 numpy 和 openblas 来轻松地将 openblas 链接到 numpy
sudo apt-get install numpy libopenblas-dev
在一个新的 docker ubuntu 上,我测试了从博客文章“安装 Numpy 和 OpenBLAS”中复制的以下脚本
import numpy as np
import numpy.random as npr
import time
# --- Test 1
N = 1
n = 1000
A = npr.randn(n,n)
B = npr.randn(n,n)
t = time.time()
for i in range(N):
C = np.dot(A, B)
td = time.time() - t
print("dotted two (%d,%d) matrices in %0.1f ms" % (n, n, 1e3*td/N))
# --- Test 2
N = 100
n = 4000
A = npr.randn(n)
B = npr.randn(n)
t = time.time()
for i in range(N):
C = np.dot(A, B)
td = time.time() - t
print("dotted two (%d) vectors in %0.2f us" % (n, 1e6*td/N))
# --- Test 3
m,n = (2000,1000)
A = npr.randn(m,n)
t = time.time()
[U,s,V] = np.linalg.svd(A, full_matrices=False)
td = time.time() - t
print("SVD of (%d,%d) matrix in %0.3f s" % (m, n, td))
# --- Test 4
n = 1500
A = npr.randn(n,n)
t = time.time()
w, v = np.linalg.eig(A)
td = time.time() - t
print("Eigendecomp of (%d,%d) matrix in %0.3f s" % (n, n, td))
没有openblas,结果是:
dotted two (1000,1000) matrices in 563.8 ms
dotted two (4000) vectors in 5.16 us
SVD of (2000,1000) matrix in 6.084 s
Eigendecomp of (1500,1500) matrix in 14.605 s
在我安装了 openblas 之后apt install openblas-dev
,我检查了 numpy 链接
import numpy as np
np.__config__.show()
信息是
atlas_threads_info:
NOT AVAILABLE
openblas_info:
NOT AVAILABLE
atlas_blas_info:
NOT AVAILABLE
atlas_3_10_threads_info:
NOT AVAILABLE
blas_info:
library_dirs = ['/usr/lib']
libraries = ['blas', 'blas']
language = c
define_macros = [('HAVE_CBLAS', None)]
mkl_info:
NOT AVAILABLE
atlas_3_10_blas_threads_info:
NOT AVAILABLE
atlas_3_10_blas_info:
NOT AVAILABLE
openblas_lapack_info:
NOT AVAILABLE
lapack_opt_info:
library_dirs = ['/usr/lib']
libraries = ['lapack', 'lapack', 'blas', 'blas']
language = c
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
blas_opt_info:
library_dirs = ['/usr/lib']
libraries = ['blas', 'blas']
language = c
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
atlas_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
lapack_mkl_info:
NOT AVAILABLE
atlas_3_10_info:
NOT AVAILABLE
lapack_info:
library_dirs = ['/usr/lib']
libraries = ['lapack', 'lapack']
language = f77
atlas_blas_threads_info:
NOT AVAILABLE
它没有显示与 openblas 的链接。但是,脚本的新结果显示 numpy 一定使用过 openblas:
dotted two (1000,1000) matrices in 15.2 ms
dotted two (4000) vectors in 2.64 us
SVD of (2000,1000) matrix in 0.469 s
Eigendecomp of (1500,1500) matrix in 2.794 s
这是一种比@ali_m 的答案更简单的方法,它适用于 macOS。
如果没有,请安装 gfortran 编译器。例如在 macOS 上使用自制软件:
$ brew install gcc
从源代码编译OpenBLAS
[或使用包管理器],获取源代码库或下载版本:
$ git clone https://github.com/xianyi/OpenBLAS
$ cd OpenBLAS && make FC=gfortran
$ sudo make PREFIX=/opt/OpenBLAS install
如果您不/不能sudo,请设置PREFIX=
到另一个目录并在下一步中修改路径。
OpenBLAS 不需要在编译器包含路径或链接器库路径上。
创建一个~/.numpy-site.cfg
包含您在步骤 2 中使用的 PREFIX 路径的文件:
[openblas]
libraries = openblas
library_dirs = /opt/OpenBLAS/lib
runtime_library_dirs = /opt/OpenBLAS/lib
include_dirs = /opt/OpenBLAS/include
include_dirs
是给编译器的。library_dirs
用于链接器。runtime_library_dirs
用于加载程序,可能不需要。
pip-install numpy 和 scipy 从源代码(最好安装到 virtualenv 中),无需手动下载它们[您也可以指定发布版本]:
pip install numpy scipy --no-binary numpy,scipy
以我的经验,OPENBLAS_NUM_THREADS
运行时的此设置使 OpenBLAS 更快,而不是更慢,尤其是。当多个 CPU 进程同时使用它时:
export OPENBLAS_NUM_THREADS=1
(或者,您可以使用 . 编译 OpenBLAS make FC=gfortran USE_THREAD=0
。)
有关测试它的方法,请参阅其他答案。