0

我想用卷积核过滤像素,但有偏差,我看不到如何使用 Leptonica API“模拟”偏差。

到目前为止,我有:

PIX* pixs = pixRead("file.png");
L_KERNEL* kel = kernelCreatFromString( 7, 7, 3, 3, "..." );

PIX* pixd = pixConvolve( pixs, kel, 8, 1 );

任何想法如何模仿经典的“偏见”?我试图在 pixConvolve 之前或之后将它的值添加到图像的每个像素,但结果不是大多数图像处理软件观察到的结果。

4

2 回答 2

1

通过“偏差”,我假设您想要移动结果,以便所有像素值都是非负的。

在 pixConvolve() 的注释中,它表示采用绝对值以避免负输出。它还说,如果您希望保留负值,请改用 fpixConvolve(),它在 FPix 上运行并生成 FPix。

如果您想要一个没有裁剪的有偏差的结果,通常需要执行以下操作:

  • (1) pixConvertToFpix() -- 转换为 FPix
  • (2) fpixConvolve() -- 在 FPix 上做卷积,产生一个 FPix
  • (3) fpixGetMin() -- 确定使所有值非零所需的偏差
  • (4) fpixAddMultConstant() -- 添加偏置到 FPix
  • (5) fpixGetMax() -- 求最大值;如果 > 255,则需要 16 bpp Pix 来表示它
  • (6) fpixConvertToPix -- 转换回像素

也许 leptonica 维护者(我)应该将它捆绑到一个简单的界面中;-)

好的,这是一个函数,按照我上面写的大纲,它应该提供足够的灵活性来进行这些卷积。

 /*!
 *  pixConvolveWithBias()
 *              Input:  pixs (8 bpp; no colormap)
 *              kel1
 *              kel2  (can be null; use if separable)
 *              force8 (if 1, force output to 8 bpp; otherwise, determine
 *                      output depth by the dynamic range of pixel values)
 *              &bias (<return> applied bias)
 *      Return: pixd (8 or 16 bpp)
 *
 *  Notes:
 *      (1) This does a convolution with either a single kernel or
 *          a pair of separable kernels, and automatically applies whatever
 *          bias (shift) is required so that the resulting pixel values
 *          are non-negative.
 *      (2) If there are no negative values in the kernel, a normalized
 *          convolution is performed, with 8 bpp output.
 *      (3) If there are negative values in the kernel, the pix is
 *          converted to an fpix, the convolution is done on the fpix, and
 *          a bias (shift) may need to be applied.
 *      (4) If force8 == TRUE and the range of values after the convolution
 *          is > 255, the output values will be scaled to fit in
 *          [0 ... 255].
 *          If force8 == FALSE, the output will be either 8 or 16 bpp,
 *          to accommodate the dynamic range of output values without
 *          scaling.
 */
PIX *
pixConvolveWithBias(PIX       *pixs,
                    L_KERNEL  *kel1,
                    L_KERNEL  *kel2,
                    l_int32    force8,
                    l_int32   *pbias)
{
l_int32    outdepth;
l_float32  min1, min2, min, minval, maxval, range;
FPIX      *fpix1, *fpix2;
PIX       *pixd;

    PROCNAME("pixConvolveWithBias");

    if (!pixs || pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pixs has colormap", procName, NULL);
    if (!kel1)
        return (PIX *)ERROR_PTR("kel1 not defined", procName, NULL);

        /* Determine if negative values can be produced in convolution */
    kernelGetMinMax(kel1, &min1, NULL);
    min2 = 0.0;
    if (kel2)
        kernelGetMinMax(kel2, &min2, NULL);
    min = L_MIN(min1, min2);

    if (min >= 0.0) {
        if (!kel2)
            return pixConvolve(pixs, kel1, 8, 1);
        else
            return pixConvolveSep(pixs, kel1, kel2, 8, 1);
    }

        /* Bias may need to be applied; convert to fpix and convolve */
    fpix1 = pixConvertToFPix(pixs, 1);
    if (!kel2)
        fpix2 = fpixConvolve(fpix1, kel1, 1);
    else
        fpix2 = fpixConvolveSep(fpix1, kel1, kel2, 1);
    fpixDestroy(&fpix1);

       /* Determine the bias and the dynamic range.
         * If the dynamic range is <= 255, just shift the values by the
         * bias, if any.
         * If the dynamic range is > 255, there are two cases:
         *    (1) the output depth is not forced to 8 bpp ==> outdepth = 16
         *    (2) the output depth is forced to 8 ==> linearly map the
         *        pixel values to [0 ... 255].  */
    fpixGetMin(fpix2, &minval, NULL, NULL);
    fpixGetMax(fpix2, &maxval, NULL, NULL);
    range = maxval - minval;
    *pbias = (minval < 0.0) ? -minval : 0.0;
    fpixAddMultConstant(fpix2, *pbias, 1.0);  /* shift: min val ==> 0 */
    if (range <= 255 || !force8) {  /* no scaling of output values */
        outdepth = (range > 255) ? 16 : 8;
    } else {  /* scale output values to fit in 8 bpp */
        fpixAddMultConstant(fpix2, 0.0, (255.0 / range));
        outdepth = 8;
    }

        /* Convert back to pix; it won't do any clipping */
    pixd = fpixConvertToPix(fpix2, outdepth, L_CLIP_TO_ZERO, 0);
    fpixDestroy(&fpix2);

    return pixd;
}
于 2012-07-09T20:16:13.380 回答
0

这是我根据 Dan 输入需要的解决方案。

/*!
 *  pixConvolveWithBias()
 *              Input:  pixs (8 bpp; no colormap)
 *              kel1
 *              kel2  (can be null; use if separable)
 *              outdepth (of pixd: 8, 16 or 32)
 *              normflag (1 to normalize kernel to unit sum; 0 otherwise)
 *              bias
 *      Return: pixd
 *
 *  Notes:
 *      (1) This does a convolution with either a single kernel or
 *          a pair of separable kernels, and automatically applies whatever
 *          bias (shift) is required so that the resulting pixel values
 *          are non-negative.
 *      (2) If there are no negative values in the kernel, a convolution 
 *          is performed and bias added.
 *      (3) If there are negative values in the kernel, the pix is
 *          converted to an fpix, the convolution is done on the fpix, and
 *          a bias (shift) is applied.
 */
PIX *
pixConvolveWithBias(PIX       *pixs,
                    L_KERNEL  *kel1,
                    L_KERNEL  *kel2,
                    l_int32    outdepth,
                    l_int32    normflag,
                    l_int32    bias)
{
l_float32  min1, min2, min, minval, maxval, range;
FPIX      *fpix1, *fpix2;
PIX       *pixd;

    PROCNAME("pixConvolveWithBias");

    if (!pixs || pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pixs has colormap", procName, NULL);
    if (!kel1)
        return (PIX *)ERROR_PTR("kel1 not defined", procName, NULL);

        /* Determine if negative values can be produced in convolution */
    kernelGetMinMax(kel1, &min1, NULL);
    min2 = 0.0;
    if (kel2)
        kernelGetMinMax(kel2, &min2, NULL);
    min = L_MIN(min1, min2);

    if (min >= 0.0) {
        if (!kel2)
            pixd = pixConvolve(pixs, kel1, outdepth, normflag);
        else
            pixd = pixConvolveSep(pixs, kel1, kel2, outdepth, normflag);

        pixAddConstantGray(pixd, bias);
    } else {

          /* Bias may need to be applied; convert to fpix and convolve */
      fpix1 = pixConvertToFPix(pixs, 1);
      if (!kel2)
          fpix2 = fpixConvolve(fpix1, kel1, normflag);
      else
          fpix2 = fpixConvolveSep(fpix1, kel1, kel2, normflag);
      fpixDestroy(&fpix1);

      fpixAddMultConstant(fpix2, bias, 1.0);

      pixd = fpixConvertToPix(fpix2, outdepth, L_CLIP_TO_ZERO, 0);
      fpixDestroy(&fpix2);

    }

    return pixd;
}
于 2012-07-10T12:30:18.887 回答