背景
德国有16个联邦州,其中10个属于西德,6个属于东德。在某些方面,例如某些癌症的死亡率,前西部 10 个州与前东部 6 个州之间存在持续差异。各个组内的州之间也存在差异。
为了显示各州之间的差异,绘制数据可能具有一定的意义,例如每个州的年龄标准化乳腺癌死亡率。16 行的情节并不总是一个好的选择,我不想就此展开讨论。有时,权力就是这样说的。
问题
区分绘图上的 16 条线可能很困难。为此,我通常使用包装中的颜色组合RColorBrewer
(前十种颜色Set3
加上该调色板的前六种颜色,对应于前西部的十个州和前东的六个州)和线型(一种线型用于东,西一个)。使用该lattice
软件包,1998-2010 年各州的年龄标准化乳腺癌死亡率图可能如下所示:
问题
我想用 做一个类似的情节ggplot
,但我还没有弄清楚如何在图例中组合颜色和线型。到目前为止,我已经做到了这一点:
如果可以在图例中组合颜色和线型ggplot
,那么如何去做呢?
这是创建数据框和绘图的代码:
mort3 <- structure(list(State = structure(c(8L, 9L, 11L, 12L, 4L, 2L,
6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L,
4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L,
11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L,
8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L,
1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L,
14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L,
7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L,
3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L,
6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L,
4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L,
11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L,
8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L,
1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L,
14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L,
7L, 10L, 14L, 15L, 1L, 16L), class = "factor", .Label = c("SH",
"HH", "NI", "HB", "NW", "HE", "RP", "BW", "BY", "SL", "BE", "BB",
"MV", "SN", "ST", "TH")), BCmort = c(16.5, 16.6, 15, 14.4, 13.5,
17.1, 15.8, 16.3, 18.3, 16.8, 17, 18.1, 13.1, 15.1, 18.8, 13.1,
16.4, 16.1, 15.8, 12.8, 16.3, 19.2, 16.8, 13, 17.9, 17, 19.4,
19.4, 13.1, 13.8, 18.1, 13.8, 15.9, 17.3, 17.5, 13.7, 17.4, 17.5,
16.7, 15.5, 18.1, 18, 20.1, 19.1, 11.8, 14.6, 18.2, 13.4, 16.8,
17.5, 15.6, 14.1, 13.9, 18.2, 17.1, 15.2, 18.1, 16.6, 19.3, 18.6,
13.1, 14.6, 19.6, 12.4, 16.6, 17.8, 17.5, 14.3, 20.5, 19.2, 19,
12.6, 19.5, 17.8, 19.2, 21, 14.4, 13.4, 19.8, 14, 17.5, 18.9,
16.4, 14.7, 17.7, 20.1, 18.5, 14.5, 19.1, 19.2, 20.1, 19.7, 14.2,
16.2, 17.9, 12.6, 18, 18.7, 17.7, 16.5, 16.6, 20.3, 18.1, 15.2,
19, 20, 19.8, 21.3, 13.8, 14.8, 20.4, 14.8, 18.2, 18.7, 16.9,
16.2, 20.2, 20.4, 18.5, 14, 20.2, 18.7, 20.3, 17.7, 14.4, 14.5,
21.7, 13.7, 18.3, 19.7, 17.8, 16.5, 20.2, 21.7, 18.8, 16.7, 20.4,
20, 19.6, 22.9, 15.2, 14.9, 21.7, 14.6, 18.3, 19.7, 17, 16.7,
22.9, 16.2, 19.6, 15.9, 20.3, 19.9, 18.9, 21.8, 14.9, 18, 21.4,
16.1, 19.6, 19.2, 19.1, 16.7, 20, 18.2, 20.5, 15.5, 20.5, 21.1,
21.3, 23.8, 15.8, 15.3, 21.3, 15.7, 19.6, 20.3, 19.2, 17.4, 18.1,
23.1, 20.6, 16.2, 21.5, 20.3, 21.4, 20.8, 16.1, 15.8, 22.1, 14.5,
20, 20.2, 19, 18.7, 23.1, 21.8, 19.4, 17.4, 20.9, 20.5, 20.4,
23.2, 16.3, 17.6, 23.1, 16.5), year = c(2010, 2010, 2010, 2010,
2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
2010, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009,
2009, 2009, 2009, 2009, 2009, 2009, 2008, 2008, 2008, 2008, 2008,
2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008,
2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007,
2007, 2007, 2007, 2007, 2007, 2006, 2006, 2006, 2006, 2006, 2006,
2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2005,
2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005,
2005, 2005, 2005, 2005, 2004, 2004, 2004, 2004, 2004, 2004, 2004,
2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2003, 2003,
2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003,
2003, 2003, 2003, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002,
2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2001, 2001, 2001,
2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001,
2001, 2001, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,
2000, 2000, 2000, 2000, 2000, 2000, 2000, 1999, 1999, 1999, 1999,
1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999,
1999, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998,
1998, 1998, 1998, 1998, 1998, 1998), eastWest = structure(c(1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L), .Label = c("west",
"east"), class = "factor")), .Names = c("State", "BCmort", "year",
"eastWest"), class = "data.frame", row.names = c(NA, -208L))
colVec<-c(brewer.pal(10,"Set3"),brewer.pal(6,"Set3"))
ltyVec<-rep(c("solid","dashed"),c(10,6))
ggplot(mort3, aes(x = year, y = BCmort, col = State, lty = eastWest)) +
geom_line(lwd = 1) +
scale_linetype_manual(values = c(west = "solid", east = "dashed")) +
scale_color_manual(values = c(brewer.pal(10, "Set3"), brewer.pal(6, "Set3"))) +
opts(title = "BC mortality")
xyplot(BCmort ~ year, data = mort3, groups = State, lty = ltyVec,
type = "l", col = colVec, lwd = 2,
key = list(lines = list(lty = ltyVec, col = colVec, lwd = 2),
text = list(levels(mort3$State)), columns = 1,
space = "right", title = "State"), grid = TRUE, main = "BC mortality")