我知道这个问题已经很老了,而且i80回答这个问题做得很好,但我只是想补充一下(对于未来的 SO-ers),有一种非常简单的方法可以用 Apache Math 计算导数或偏导数(所以你没有为雅可比矩阵做你自己的微分)。这是DerivativeStructure。
扩展i80and的答案以使用DerivativeStructure类:
//Everything stays the same except for the Jacobian Matrix
import java.util.*;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.fitting.AbstractCurveFitter;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.fitting.WeightedObservedPoint;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
class MyFunc implements ParametricUnivariateFunction {
public double value(double t, double... parameters) {
return parameters[0] * Math.pow(t, parameters[1]) * Math.exp(-parameters[2] * t);
}
// Jacobian matrix of the above. In this case, this is just an array of
// partial derivatives of the above function, with one element for each parameter.
public double[] gradient(double t, double... parameters) {
final double a = parameters[0];
final double b = parameters[1];
final double c = parameters[2];
// Jacobian Matrix Edit
// Using Derivative Structures...
// constructor takes 4 arguments - the number of parameters in your
// equation to be differentiated (3 in this case), the order of
// differentiation for the DerivativeStructure, the index of the
// parameter represented by the DS, and the value of the parameter itself
DerivativeStructure aDev = new DerivativeStructure(3, 1, 0, a);
DerivativeStructure bDev = new DerivativeStructure(3, 1, 1, b);
DerivativeStructure cDev = new DerivativeStructure(3, 1, 2, c);
// define the equation to be differentiated using another DerivativeStructure
DerivativeStructure y = aDev.multiply(DerivativeStructure.pow(t, bDev))
.multiply(cDev.negate().multiply(t).exp());
// then return the partial derivatives required
// notice the format, 3 arguments for the method since 3 parameters were
// specified first order derivative of the first parameter, then the second,
// then the third
return new double[] {
y.getPartialDerivative(1, 0, 0),
y.getPartialDerivative(0, 1, 0),
y.getPartialDerivative(0, 0, 1)
};
}
}
public class MyFuncFitter extends AbstractCurveFitter {
protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points) {
final int len = points.size();
final double[] target = new double[len];
final double[] weights = new double[len];
final double[] initialGuess = { 1.0, 1.0, 1.0 };
int i = 0;
for(WeightedObservedPoint point : points) {
target[i] = point.getY();
weights[i] = point.getWeight();
i += 1;
}
final AbstractCurveFitter.TheoreticalValuesFunction model = new
AbstractCurveFitter.TheoreticalValuesFunction(new MyFunc(), points);
return new LeastSquaresBuilder().
maxEvaluations(Integer.MAX_VALUE).
maxIterations(Integer.MAX_VALUE).
start(initialGuess).
target(target).
weight(new DiagonalMatrix(weights)).
model(model.getModelFunction(), model.getModelFunctionJacobian()).
build();
}
public static void main(String[] args) {
MyFuncFitter fitter = new MyFuncFitter();
ArrayList<WeightedObservedPoint> points = new ArrayList<WeightedObservedPoint>();
// Add points here; for instance,
WeightedObservedPoint point = new WeightedObservedPoint(1.0,
1.0,
1.0);
points.add(point);
final double coeffs[] = fitter.fit(points);
System.out.println(Arrays.toString(coeffs));
}
}
就是这样。我知道这是一个使用起来非常复杂/令人困惑的类,但是当您处理非常复杂的方程时,它肯定会派上用场,而手动获得偏导数会很麻烦(这发生在我不久前),或者当您想导出偏导数时,请说二阶或三阶。
对于二阶、三阶等阶导数,您所要做的就是:
// specify the required order as the second argument, say second order so 2
DerivativeStructure aDev = new DerivativeStructure(3, 2, 0, a);
DerivativeStructure bDev = new DerivativeStructure(3, 2, 1, b);
DerivativeStructure cDev = new DerivativeStructure(3, 2, 2, c);
// and then specify the order again here
y.getPartialDerivative(2, 0, 0),
y.getPartialDerivative(0, 2, 0),
y.getPartialDerivative(0, 0, 2)
希望这对某人有所帮助。