5

我正在寻找一种可以检查嵌套正则表达式重复是否可减少的算法。假设解析正则表达式已经完成。

例子:

(1{1,2}){1,2} === 1{1,4}
    It matches 1, 11, 111, 1111 which can be rewritten as a single repeat

(1{2,2}){1,2} can not be reduced
    It matches 11 and 1111 which can not be rewritten as a single repeat.

(1{10,11}){1,2} can not be reduced

(1{10,19}){1,2} === 1{10,38}

(1{1,2}){10,11} === 1{10,22}

(1{10,11})* can not be reduced

(1*){10,11} === 1*

我一直在尝试为这种类型的操作找到一种模式,而不必匹配所有可能的解决方案并寻找可以防止它被减少的漏洞。必须有一个简单的函数 ( f( A, B, C, D ) -> ( E, F )) 可以解决这样的任意输入:

(1{A,B}){C,D} -> 1{E,F}
4

2 回答 2

3
// (x{A,B}){C,D} -> x{E,F}
bool SimplifyNestedRepetition(int A, int B,
                              int C, int D,
                              out int E, out int F)
{
    if (B == -1 || C == D || A*(C+1) <= B*C + 1)
    {
        E = A*C;

        if (B == -1 || D == -1) F = -1;
        else F = B*D;

        return true;
    }
    return false;
}
  • 如果x{A,B}是无限的,它可以重复任意次数。
  • (x{A,B}){C}总是可约的。
  • 如果,您可以减少它,因为在最长的重复序列和最短的重复A*(C+1) <= B*C + 1序列之间没有间隙。CC+1

B = -1orD == -1表示无限,比如x*or x{5,}


测试用例:

Input           Reducible?
(x{0,0}){0,0}   Yes - x{0,0}
(x{0,1}){0,0}   Yes - x{0,0}
(x{0,2}){0,0}   Yes - x{0,0}
(x{1,1}){0,0}   Yes - x{0,0}
(x{1,2}){0,0}   Yes - x{0,0}
(x{1,3}){0,0}   Yes - x{0,0}
(x{2,2}){0,0}   Yes - x{0,0}
(x{2,3}){0,0}   Yes - x{0,0}
(x{2,4}){0,0}   Yes - x{0,0}
(x{0,0}){0,1}   Yes - x{0,0}
(x{0,1}){0,1}   Yes - x{0,1}
(x{0,2}){0,1}   Yes - x{0,2}
(x{1,1}){0,1}   Yes - x{0,1}
(x{1,2}){0,1}   Yes - x{0,2}
(x{1,3}){0,1}   Yes - x{0,3}
(x{2,2}){0,1}   No 
(x{2,3}){0,1}   No 
(x{2,4}){0,1}   No 
(x{0,0}){0,2}   Yes - x{0,0}
(x{0,1}){0,2}   Yes - x{0,2}
(x{0,2}){0,2}   Yes - x{0,4}
(x{1,1}){0,2}   Yes - x{0,2}
(x{1,2}){0,2}   Yes - x{0,4}
(x{1,3}){0,2}   Yes - x{0,6}
(x{2,2}){0,2}   No 
(x{2,3}){0,2}   No 
(x{2,4}){0,2}   No 
(x{0,0}){1,1}   Yes - x{0,0}
(x{0,1}){1,1}   Yes - x{0,1}
(x{0,2}){1,1}   Yes - x{0,2}
(x{1,1}){1,1}   Yes - x{1,1}
(x{1,2}){1,1}   Yes - x{1,2}
(x{1,3}){1,1}   Yes - x{1,3}
(x{2,2}){1,1}   Yes - x{2,2}
(x{2,3}){1,1}   Yes - x{2,3}
(x{2,4}){1,1}   Yes - x{2,4}
(x{0,0}){1,2}   Yes - x{0,0}
(x{0,1}){1,2}   Yes - x{0,2}
(x{0,2}){1,2}   Yes - x{0,4}
(x{1,1}){1,2}   Yes - x{1,2}
(x{1,2}){1,2}   Yes - x{1,4}
(x{1,3}){1,2}   Yes - x{1,6}
(x{2,2}){1,2}   No 
(x{2,3}){1,2}   Yes - x{2,6}
(x{2,4}){1,2}   Yes - x{2,8}
(x{0,0}){1,3}   Yes - x{0,0}
(x{0,1}){1,3}   Yes - x{0,3}
(x{0,2}){1,3}   Yes - x{0,6}
(x{1,1}){1,3}   Yes - x{1,3}
(x{1,2}){1,3}   Yes - x{1,6}
(x{1,3}){1,3}   Yes - x{1,9}
(x{2,2}){1,3}   No 
(x{2,3}){1,3}   Yes - x{2,9}
(x{2,4}){1,3}   Yes - x{2,12}
(x{0,0}){2,2}   Yes - x{0,0}
(x{0,1}){2,2}   Yes - x{0,2}
(x{0,2}){2,2}   Yes - x{0,4}
(x{1,1}){2,2}   Yes - x{2,2}
(x{1,2}){2,2}   Yes - x{2,4}
(x{1,3}){2,2}   Yes - x{2,6}
(x{2,2}){2,2}   Yes - x{4,4}
(x{2,3}){2,2}   Yes - x{4,6}
(x{2,4}){2,2}   Yes - x{4,8}
(x{0,0}){2,3}   Yes - x{0,0}
(x{0,1}){2,3}   Yes - x{0,3}
(x{0,2}){2,3}   Yes - x{0,6}
(x{1,1}){2,3}   Yes - x{2,3}
(x{1,2}){2,3}   Yes - x{2,6}
(x{1,3}){2,3}   Yes - x{2,9}
(x{2,2}){2,3}   No 
(x{2,3}){2,3}   Yes - x{4,9}
(x{2,4}){2,3}   Yes - x{4,12}
(x{0,0}){2,4}   Yes - x{0,0}
(x{0,1}){2,4}   Yes - x{0,4}
(x{0,2}){2,4}   Yes - x{0,8}
(x{1,1}){2,4}   Yes - x{2,4}
(x{1,2}){2,4}   Yes - x{2,8}
(x{1,3}){2,4}   Yes - x{2,12}
(x{2,2}){2,4}   No 
(x{2,3}){2,4}   Yes - x{4,12}
(x{2,4}){2,4}   Yes - x{4,16}
于 2012-06-25T05:50:15.697 回答
2

如果您不使用反向链接等“高级”正则表达式功能,那么正则表达式只是有限状态自动机,是状态机的简单版本。它们具有非常好的特性,即对于所有 FSA,都存在一个唯一的最小 FSA,甚至很容易找到它:Wikipedia

虽然您的问题似乎更具体,但我相信查看其中描述的一些最小化算法可能会很有用。

于 2012-06-25T08:00:14.340 回答