2

从视频文件开始,我逐帧扫描视频,直到找到使用 OpenCV Haar 正面面部级联的面部。然后,我将这些坐标传递给 Camshift(使用 OpenCV 示例代码)以从该帧开始跟踪该面部。然后,我在 Camshift 返回的跟踪框中使用 Haar 眼睛/嘴巴检测,假设这是我感兴趣的区域。

当我这样做时,眼睛/嘴巴检测返回很少/没有结果。

如果我只是在没有 Camshift 的情况下使用相同的眼睛和嘴巴检测器对视频进行基本运行,那么它们会检测到眼睛和嘴巴(尽管经常将嘴巴检测为眼睛,反之亦然,但仍然比我的 Camshift 跟踪 ROI 方法更好的检测)。

这与我的期望背道而驰——不应该将搜索限制在已知和跟踪的人脸的 ROI 内,从而实现比对整个视频帧进行愚蠢扫描更可靠的人脸特征检测吗?也许我对搜索坐标做了一些不恰当的事情……</p>

非常感谢任何帮助。

import numpy as np
import cv2
import cv
from common import clock, draw_str
import video

class App(object):

def __init__(self, video_src):  

    if video_src == "webcam":
        self.cam = video.create_capture(0)

    else:       
        self.vidFile = cv.CaptureFromFile('sources/' + video_src + '.mp4')
        self.vidFrames = int(cv.GetCaptureProperty(self.vidFile, cv.CV_CAP_PROP_FRAME_COUNT))

    self.cascade_fn = "haarcascades/haarcascade_frontalface_default.xml"
    self.cascade = cv2.CascadeClassifier(self.cascade_fn)

    self.left_eye_fn = "haarcascades/haarcascade_eye.xml"
    self.left_eye = cv2.CascadeClassifier(self.left_eye_fn)

    self.mouth_fn = "haarcascades/haarcascade_mcs_mouth.xml"
    self.mouth = cv2.CascadeClassifier(self.mouth_fn)       

    self.selection = None
    self.drag_start = None
    self.tracking_state = 0
    self.show_backproj = False

    self.face_frame = 0

    cv2.namedWindow('camshift')
    cv2.namedWindow('source')
    #cv2.namedWindow('hist')

    if video_src == "webcam":
        while True:
            ret, img = self.cam.read()
            self.rects = self.faceSearch(img)
            print "Searching for face..."
            if len(self.rects) != 0:
                break

    else:
        for f in xrange(self.vidFrames):
            img = cv.QueryFrame(self.vidFile)
            tmp = cv.CreateImage(cv.GetSize(img), 8, 3)
            cv.CvtColor(img, tmp, cv.CV_BGR2RGB)
            img = np.asarray(cv.GetMat(tmp))
            print "Searching frame", f+1
            self.face_frame = f
            self.rects = self.faceSearch(img)
            if len(self.rects) != 0:
                break

def faceSearch(self, img):

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.equalizeHist(gray)

    rects = self.detect(gray, self.cascade)

    if len(rects) != 0:
        print "Detected face"
        sizeX = rects[0][2] - rects[0][0]
        sizeY = rects[0][3] - rects[0][1]
        print "Face size is", sizeX, "by", sizeY
        return rects
    else:
        return []

def detect(self, img, cascade):

    # flags = cv.CV_HAAR_SCALE_IMAGE
    rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=2, minSize=(80, 80), flags = cv.CV_HAAR_SCALE_IMAGE)
    if len(rects) == 0:
        return []
    rects[:,2:] += rects[:,:2]
    return rects

def draw_rects(self, img, rects, color):
    for x1, y1, x2, y2 in rects:
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)

def show_hist(self):
    bin_count = self.hist.shape[0]
    bin_w = 24
    img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
    for i in xrange(bin_count):
        h = int(self.hist[i])
        cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
    img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
    cv2.imshow('hist', img)
    cv.MoveWindow('hist', 0, 440)

def faceTrack(self, img):
    vis = img.copy()        

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))

    x0, y0, x1, y1 = self.rects[0]
    self.track_window = (x0, y0, x1-x0, y1-y0)
    hsv_roi = hsv[y0:y1, x0:x1]
    mask_roi = mask[y0:y1, x0:x1]
    hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
    cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
    self.hist = hist.reshape(-1)
    #self.show_hist()

    vis_roi = vis[y0:y1, x0:x1]
    cv2.bitwise_not(vis_roi, vis_roi)
    vis[mask == 0] = 0

    prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
    prob &= mask
    term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
    track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)

    if self.show_backproj:
        vis[:] = prob[...,np.newaxis]
    try: cv2.ellipse(vis, track_box, (0, 0, 255), 2)
    except: print track_box     

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.equalizeHist(gray)

    xc = track_box[0][0]
    yc = track_box[0][1]

    xsize = track_box[1][0]
    ysize = track_box[1][1]

    x1 = int(xc - (xsize/2))
    y1 = int(yc - (ysize/2))
    x2 = int(xc + (xsize/2))
    y2 = int(yc + (ysize/2))

    roi_rect = y1, y2, x1, x2

    roi = gray[y1:y2, x1:x2]
    vis_roi = img.copy()[y1:y2, x1:x2]

    subrects_left_eye = self.detect(roi.copy(), self.left_eye)
    subrects_mouth = self.detect(roi.copy(), self.mouth)

    if subrects_left_eye != []:
        print "eye:", subrects_left_eye, "in roi:", roi_rect

    self.draw_rects(vis_roi, subrects_left_eye, (255, 0, 0))
    self.draw_rects(vis_roi, subrects_mouth, (0, 255, 0))

    cv2.imshow('test', vis_roi)

    dt = clock() - self.t
    draw_str(vis, (20, 20), 'time: %.1f ms' % (dt*1000))
    #draw_str(vis, (20, 35), 'frame: %d' % f)

    cv2.imshow('source', img)
    cv.MoveWindow('source', 500, 0)
    cv2.imshow('camshift', vis) 


def run(self):

    if video_src == "webcam":
        while True:
            self.t = clock()
            ret, img = self.cam.read()

            self.faceTrack(img)

            ch = 0xFF & cv2.waitKey(1)
            if ch == 27:
                break
            if ch == ord('b'):
                self.show_backproj = not self.show_backproj

    else:
        for f in xrange(self.face_frame, self.vidFrames):
            self.t = clock()
            img = cv.QueryFrame(self.vidFile)
            if type(img) != cv2.cv.iplimage:
                break

            tmp = cv.CreateImage(cv.GetSize(img), 8, 3)
            cv.CvtColor(img, tmp, cv.CV_BGR2RGB)
            img = np.asarray(cv.GetMat(tmp))    

            self.faceTrack(img)

            ch = 0xFF & cv2.waitKey(5)
            if ch == 27:
                break
            if ch == ord('b'):
                self.show_backproj = not self.show_backproj     

    cv2.destroyAllWindows()


if __name__ == '__main__':
    import sys
    try: video_src = sys.argv[1]
    except: video_src = '1'
    App(video_src).run()
4

1 回答 1

1

您已经提到 detectMultiScale 的最小尺寸为 80 像素。脸可能是这样,但眼睛和嘴巴没有那么大。所以这可能是没有检测到眼睛和嘴巴的原因之一。在调用眼睛和嘴巴时,尝试将其减小到 20 或 30 像素。

于 2013-02-22T00:28:04.933 回答