我需要为这样的正则表达式匹配一个像“César”这样的词/^cesar/i
。
有没有像/i
配置正则表达式这样它忽略尖锐重音的选项?或者唯一的解决方案是使用这样的正则表达式/^césar/i
。
我需要为这样的正则表达式匹配一个像“César”这样的词/^cesar/i
。
有没有像/i
配置正则表达式这样它忽略尖锐重音的选项?或者唯一的解决方案是使用这样的正则表达式/^césar/i
。
标准的 ecmascript 正则表达式还没有为 unicode 做好准备(请参阅http://blog.stevenlevithan.com/archives/javascript-regex-and-unicode)。
所以你必须使用一个外部的正则表达式库。我过去使用过这个(带有 unicode 插件):http: //xregexp.com/
在您的情况下,您可能必须将 char 转义é
为\u00E9
并定义包含 e、é、ê 等的范围。
编辑:我刚刚看到亚历克斯的评论:你会在范围内找到重音等效的 e。
您可以先从字符串中删除重音符号并单独测试:
var someString = 'César';
var bare = removeDiacritics(someString);
if (/^cesar/i.test(bare)) {
// fail
}
有关的定义,请参阅此答案removeDiacritics()
。
按照 Ja͢ck 的回答,这是一个实现,applyDiacritics
因此您可以实际匹配字符串,而无需删除或替换任何内容。
请注意,这不适用于许多正则表达式......按原样:
var diacriticsApplyMap = {'default':[
{'base':'A', 'letters':/[\u0041\u24B6\uFF21\u00C0\u00C1\u00C2\u1EA6\u1EA4\u1EAA\u1EA8\u00C3\u0100\u0102\u1EB0\u1EAE\u1EB4\u1EB2\u0226\u01E0\u00C4\u01DE\u1EA2\u00C5\u01FA\u01CD\u0200\u0202\u1EA0\u1EAC\u1EB6\u1E00\u0104\u023A\u2C6F]/g},
{'base':'AA','letters':/[\uA732]/g},
{'base':'AE','letters':/[\u00C6\u01FC\u01E2]/g},
{'base':'AO','letters':/[\uA734]/g},
{'base':'AU','letters':/[\uA736]/g},
{'base':'AV','letters':/[\uA738\uA73A]/g},
{'base':'AY','letters':/[\uA73C]/g},
{'base':'B', 'letters':/[\u0042\u24B7\uFF22\u1E02\u1E04\u1E06\u0243\u0182\u0181]/g},
{'base':'C', 'letters':/[\u0043\u24B8\uFF23\u0106\u0108\u010A\u010C\u00C7\u1E08\u0187\u023B\uA73E]/g},
{'base':'D', 'letters':/[\u0044\u24B9\uFF24\u1E0A\u010E\u1E0C\u1E10\u1E12\u1E0E\u0110\u018B\u018A\u0189\uA779]/g},
{'base':'DZ','letters':/[\u01F1\u01C4]/g},
{'base':'Dz','letters':/[\u01F2\u01C5]/g},
{'base':'E', 'letters':/[\u0045\u24BA\uFF25\u00C8\u00C9\u00CA\u1EC0\u1EBE\u1EC4\u1EC2\u1EBC\u0112\u1E14\u1E16\u0114\u0116\u00CB\u1EBA\u011A\u0204\u0206\u1EB8\u1EC6\u0228\u1E1C\u0118\u1E18\u1E1A\u0190\u018E]/g},
{'base':'F', 'letters':/[\u0046\u24BB\uFF26\u1E1E\u0191\uA77B]/g},
{'base':'G', 'letters':/[\u0047\u24BC\uFF27\u01F4\u011C\u1E20\u011E\u0120\u01E6\u0122\u01E4\u0193\uA7A0\uA77D\uA77E]/g},
{'base':'H', 'letters':/[\u0048\u24BD\uFF28\u0124\u1E22\u1E26\u021E\u1E24\u1E28\u1E2A\u0126\u2C67\u2C75\uA78D]/g},
{'base':'I', 'letters':/[\u0049\u24BE\uFF29\u00CC\u00CD\u00CE\u0128\u012A\u012C\u0130\u00CF\u1E2E\u1EC8\u01CF\u0208\u020A\u1ECA\u012E\u1E2C\u0197]/g},
{'base':'J', 'letters':/[\u004A\u24BF\uFF2A\u0134\u0248]/g},
{'base':'K', 'letters':/[\u004B\u24C0\uFF2B\u1E30\u01E8\u1E32\u0136\u1E34\u0198\u2C69\uA740\uA742\uA744\uA7A2]/g},
{'base':'L', 'letters':/[\u004C\u24C1\uFF2C\u013F\u0139\u013D\u1E36\u1E38\u013B\u1E3C\u1E3A\u0141\u023D\u2C62\u2C60\uA748\uA746\uA780]/g},
{'base':'LJ','letters':/[\u01C7]/g},
{'base':'Lj','letters':/[\u01C8]/g},
{'base':'M', 'letters':/[\u004D\u24C2\uFF2D\u1E3E\u1E40\u1E42\u2C6E\u019C]/g},
{'base':'N', 'letters':/[\u004E\u24C3\uFF2E\u01F8\u0143\u00D1\u1E44\u0147\u1E46\u0145\u1E4A\u1E48\u0220\u019D\uA790\uA7A4]/g},
{'base':'NJ','letters':/[\u01CA]/g},
{'base':'Nj','letters':/[\u01CB]/g},
{'base':'O', 'letters':/[\u004F\u24C4\uFF2F\u00D2\u00D3\u00D4\u1ED2\u1ED0\u1ED6\u1ED4\u00D5\u1E4C\u022C\u1E4E\u014C\u1E50\u1E52\u014E\u022E\u0230\u00D6\u022A\u1ECE\u0150\u01D1\u020C\u020E\u01A0\u1EDC\u1EDA\u1EE0\u1EDE\u1EE2\u1ECC\u1ED8\u01EA\u01EC\u00D8\u01FE\u0186\u019F\uA74A\uA74C]/g},
{'base':'OI','letters':/[\u01A2]/g},
{'base':'OO','letters':/[\uA74E]/g},
{'base':'OU','letters':/[\u0222]/g},
{'base':'P', 'letters':/[\u0050\u24C5\uFF30\u1E54\u1E56\u01A4\u2C63\uA750\uA752\uA754]/g},
{'base':'Q', 'letters':/[\u0051\u24C6\uFF31\uA756\uA758\u024A]/g},
{'base':'R', 'letters':/[\u0052\u24C7\uFF32\u0154\u1E58\u0158\u0210\u0212\u1E5A\u1E5C\u0156\u1E5E\u024C\u2C64\uA75A\uA7A6\uA782]/g},
{'base':'S', 'letters':/[\u0053\u24C8\uFF33\u1E9E\u015A\u1E64\u015C\u1E60\u0160\u1E66\u1E62\u1E68\u0218\u015E\u2C7E\uA7A8\uA784]/g},
{'base':'T', 'letters':/[\u0054\u24C9\uFF34\u1E6A\u0164\u1E6C\u021A\u0162\u1E70\u1E6E\u0166\u01AC\u01AE\u023E\uA786]/g},
{'base':'TZ','letters':/[\uA728]/g},
{'base':'U', 'letters':/[\u0055\u24CA\uFF35\u00D9\u00DA\u00DB\u0168\u1E78\u016A\u1E7A\u016C\u00DC\u01DB\u01D7\u01D5\u01D9\u1EE6\u016E\u0170\u01D3\u0214\u0216\u01AF\u1EEA\u1EE8\u1EEE\u1EEC\u1EF0\u1EE4\u1E72\u0172\u1E76\u1E74\u0244]/g},
{'base':'V', 'letters':/[\u0056\u24CB\uFF36\u1E7C\u1E7E\u01B2\uA75E\u0245]/g},
{'base':'VY','letters':/[\uA760]/g},
{'base':'W', 'letters':/[\u0057\u24CC\uFF37\u1E80\u1E82\u0174\u1E86\u1E84\u1E88\u2C72]/g},
{'base':'X', 'letters':/[\u0058\u24CD\uFF38\u1E8A\u1E8C]/g},
{'base':'Y', 'letters':/[\u0059\u24CE\uFF39\u1EF2\u00DD\u0176\u1EF8\u0232\u1E8E\u0178\u1EF6\u1EF4\u01B3\u024E\u1EFE]/g},
{'base':'Z', 'letters':/[\u005A\u24CF\uFF3A\u0179\u1E90\u017B\u017D\u1E92\u1E94\u01B5\u0224\u2C7F\u2C6B\uA762]/g},
{'base':'a', 'letters':/[\u0061\u24D0\uFF41\u1E9A\u00E0\u00E1\u00E2\u1EA7\u1EA5\u1EAB\u1EA9\u00E3\u0101\u0103\u1EB1\u1EAF\u1EB5\u1EB3\u0227\u01E1\u00E4\u01DF\u1EA3\u00E5\u01FB\u01CE\u0201\u0203\u1EA1\u1EAD\u1EB7\u1E01\u0105\u2C65\u0250]/g},
{'base':'aa','letters':/[\uA733]/g},
{'base':'ae','letters':/[\u00E6\u01FD\u01E3]/g},
{'base':'ao','letters':/[\uA735]/g},
{'base':'au','letters':/[\uA737]/g},
{'base':'av','letters':/[\uA739\uA73B]/g},
{'base':'ay','letters':/[\uA73D]/g},
{'base':'b', 'letters':/[\u0062\u24D1\uFF42\u1E03\u1E05\u1E07\u0180\u0183\u0253]/g},
{'base':'c', 'letters':/[\u0063\u24D2\uFF43\u0107\u0109\u010B\u010D\u00E7\u1E09\u0188\u023C\uA73F\u2184]/g},
{'base':'d', 'letters':/[\u0064\u24D3\uFF44\u1E0B\u010F\u1E0D\u1E11\u1E13\u1E0F\u0111\u018C\u0256\u0257\uA77A]/g},
{'base':'dz','letters':/[\u01F3\u01C6]/g},
{'base':'e', 'letters':/[\u0065\u24D4\uFF45\u00E8\u00E9\u00EA\u1EC1\u1EBF\u1EC5\u1EC3\u1EBD\u0113\u1E15\u1E17\u0115\u0117\u00EB\u1EBB\u011B\u0205\u0207\u1EB9\u1EC7\u0229\u1E1D\u0119\u1E19\u1E1B\u0247\u025B\u01DD]/g},
{'base':'f', 'letters':/[\u0066\u24D5\uFF46\u1E1F\u0192\uA77C]/g},
{'base':'g', 'letters':/[\u0067\u24D6\uFF47\u01F5\u011D\u1E21\u011F\u0121\u01E7\u0123\u01E5\u0260\uA7A1\u1D79\uA77F]/g},
{'base':'h', 'letters':/[\u0068\u24D7\uFF48\u0125\u1E23\u1E27\u021F\u1E25\u1E29\u1E2B\u1E96\u0127\u2C68\u2C76\u0265]/g},
{'base':'hv','letters':/[\u0195]/g},
{'base':'i', 'letters':/[\u0069\u24D8\uFF49\u00EC\u00ED\u00EE\u0129\u012B\u012D\u00EF\u1E2F\u1EC9\u01D0\u0209\u020B\u1ECB\u012F\u1E2D\u0268\u0131]/g},
{'base':'j', 'letters':/[\u006A\u24D9\uFF4A\u0135\u01F0\u0249]/g},
{'base':'k', 'letters':/[\u006B\u24DA\uFF4B\u1E31\u01E9\u1E33\u0137\u1E35\u0199\u2C6A\uA741\uA743\uA745\uA7A3]/g},
{'base':'l', 'letters':/[\u006C\u24DB\uFF4C\u0140\u013A\u013E\u1E37\u1E39\u013C\u1E3D\u1E3B\u017F\u0142\u019A\u026B\u2C61\uA749\uA781\uA747]/g},
{'base':'lj','letters':/[\u01C9]/g},
{'base':'m', 'letters':/[\u006D\u24DC\uFF4D\u1E3F\u1E41\u1E43\u0271\u026F]/g},
{'base':'n', 'letters':/[\u006E\u24DD\uFF4E\u01F9\u0144\u00F1\u1E45\u0148\u1E47\u0146\u1E4B\u1E49\u019E\u0272\u0149\uA791\uA7A5]/g},
{'base':'nj','letters':/[\u01CC]/g},
{'base':'o', 'letters':/[\u006F\u24DE\uFF4F\u00F2\u00F3\u00F4\u1ED3\u1ED1\u1ED7\u1ED5\u00F5\u1E4D\u022D\u1E4F\u014D\u1E51\u1E53\u014F\u022F\u0231\u00F6\u022B\u1ECF\u0151\u01D2\u020D\u020F\u01A1\u1EDD\u1EDB\u1EE1\u1EDF\u1EE3\u1ECD\u1ED9\u01EB\u01ED\u00F8\u01FF\u0254\uA74B\uA74D\u0275]/g},
{'base':'oi','letters':/[\u01A3]/g},
{'base':'ou','letters':/[\u0223]/g},
{'base':'oo','letters':/[\uA74F]/g},
{'base':'p','letters':/[\u0070\u24DF\uFF50\u1E55\u1E57\u01A5\u1D7D\uA751\uA753\uA755]/g},
{'base':'q','letters':/[\u0071\u24E0\uFF51\u024B\uA757\uA759]/g},
{'base':'r','letters':/[\u0072\u24E1\uFF52\u0155\u1E59\u0159\u0211\u0213\u1E5B\u1E5D\u0157\u1E5F\u024D\u027D\uA75B\uA7A7\uA783]/g},
{'base':'s','letters':/[\u0073\u24E2\uFF53\u00DF\u015B\u1E65\u015D\u1E61\u0161\u1E67\u1E63\u1E69\u0219\u015F\u023F\uA7A9\uA785\u1E9B]/g},
{'base':'t','letters':/[\u0074\u24E3\uFF54\u1E6B\u1E97\u0165\u1E6D\u021B\u0163\u1E71\u1E6F\u0167\u01AD\u0288\u2C66\uA787]/g},
{'base':'tz','letters':/[\uA729]/g},
{'base':'u','letters':/[\u0075\u24E4\uFF55\u00F9\u00FA\u00FB\u0169\u1E79\u016B\u1E7B\u016D\u00FC\u01DC\u01D8\u01D6\u01DA\u1EE7\u016F\u0171\u01D4\u0215\u0217\u01B0\u1EEB\u1EE9\u1EEF\u1EED\u1EF1\u1EE5\u1E73\u0173\u1E77\u1E75\u0289]/g},
{'base':'v','letters':/[\u0076\u24E5\uFF56\u1E7D\u1E7F\u028B\uA75F\u028C]/g},
{'base':'vy','letters':/[\uA761]/g},
{'base':'w','letters':/[\u0077\u24E6\uFF57\u1E81\u1E83\u0175\u1E87\u1E85\u1E98\u1E89\u2C73]/g},
{'base':'x','letters':/[\u0078\u24E7\uFF58\u1E8B\u1E8D]/g},
{'base':'y','letters':/[\u0079\u24E8\uFF59\u1EF3\u00FD\u0177\u1EF9\u0233\u1E8F\u00FF\u1EF7\u1E99\u1EF5\u01B4\u024F\u1EFF]/g},
{'base':'z','letters':/[\u007A\u24E9\uFF5A\u017A\u1E91\u017C\u017E\u1E93\u1E95\u01B6\u0225\u0240\u2C6C\uA763]/g}
]};
// prepare the map to basically replace every letter in a regexp string for a character class with all letters in this map. for instance, /ai/ would become *something like* /[aáäã][iíï]/ and so on
// this is however still breaking up with '[]' when they go in the highlights, since parentheses are not allowed inside
diacriticsApplyMap.regex = [];
for (var i = 0; i < diacriticsApplyMap.default.length; i++) {
var item = diacriticsApplyMap.default[i];
var base = '(?:' + item.base + '|' + item.letters.source + ')';
diacriticsApplyMap.regex.push({
'base': '$1' + base,
'letters': new RegExp('([^\\[\\\\])'+ base +'|^'+ base, 'g')
});
}
function applyDiacritics (str, which) {
which = which || 'default';
var changes = diacriticsApplyMap[which];
for (var i = 0; i < changes.length; i++) {
str = str.replace(changes[i].letters, changes[i].base);
}
return str;
}
// tests
console.log(applyDiacritics('Jáck'));
console.log(applyDiacritics('Jáck', 'regex'));
console.log('Ja͢ck'.match(new RegExp(applyDiacritics('Jáck', 'regex'), 'gi'))); // not in the map
console.log('Jäck'.match(applyDiacritics('Jáck', 'regex')));
一般来说,当您测试两种类型的相同正则表达式输入时,它可以在 Lodash 库的帮助下轻松完成 - 一种由 lodash _deburr函数去除毛刺,另一种是原始用户的输入。基于用户名输入表单的过滤示例(几乎没有 lodash _filter 函数的帮助):
import _ from 'lodash'
const input = inputFromYourFormInput
const users = ['Jiřina Žlutá', 'Aleš Úzký'];
const regex = new RegExp(input, 'gi');
const filtered = _.filter(users, (u) => {
const debured = _.deburr(u)
if (u.name.match(regex) || debured.match(regex))
return u
})
在这种情况下,无论您的输入是 Jirina Zluta 还是 Jiřina Žlutá _filter 函数都将返回新的过滤数组 [Jirina Žlutá]
同时,如果 OP 的问题仍然只是识别/匹配整个单词,而不管重音、变音符号等,那么一种新的可能方法可以基于 JavaScript 的Intl
模块/API,而无需任何正则表达式的帮助。
文本的分词任务可以通过实例的segment
方法来完成。Intl.Segmenter
为了获得单词查询的所有匹配词,可以reduce
得到结果段,其中收集缩减器函数将根据实例的方法将每个段的类似词的标记与查询进行比较。compare
Intl.Collator
function collectMatchingWordItemFromSegment(collector, segment, idx) {
let { collator, wordQuery, wordCount = 0, result } = collector;
const { segment: token, isWordLike } = segment;
if (
isWordLike &&
(collator.compare(token, wordQuery) === 0)
) {
++wordCount;
const { segment: match, index } = segment;
result.push({
match,
index,
wordCount,
tokenCount: (idx + 1),
});
}
return { collator, wordQuery, wordCount, result };
}
const sampleText = `Risus nonummy purus. César. Facilisis potenti
ultricies dis et in sagittis id nonummy Hac cubilia sapien, césar.
Habitant eleifend vulputate tristique phasellus consectetuer, cesar
erat sagittis hendrerit porttitor consectetuer posuere dui mus class
metus nunc litora Cesar.`;
const matchingWordItemList = Array
.from(
new Intl.Segmenter('en', { granularity: 'word' }).segment(sampleText)
)
.reduce(collectMatchingWordItemFromSegment, {
collator: new Intl.Collator('en', { sensitivity: 'base' }),
wordQuery: 'cesar',
result: [],
}).result;
console.log({
sampleText,
matchingWordItemList,
});
console.log({
segmentArray: Array.from(
new Intl.Segmenter('en', { granularity: 'word' }).segment(sampleText)
)
});
.as-console-wrapper { min-height: 100%!important; top: 0; }
最近提出的关于如何 在给定文本中搜索和替换/保留单词“......不管现有的口音、变音符号等和大写/小写字符......” 的类似问题,收到了基于上述内容的两个答案/解决方案显示的技术。