我有许多样本(y_i, (a_i, b_i, c_i))
被假定为在 一定程度上y
作为多项式变化。a,b,c
例如,对于给定的一组数据和 2 级,我可能会生成模型
y = a^2 + 2ab - 3cb + c^2 +.5ac
这可以使用最小二乘来完成,并且是 numpy 的 polyfit 例程的轻微扩展。Python 生态系统中的某个地方是否有标准实现?
我有许多样本(y_i, (a_i, b_i, c_i))
被假定为在 一定程度上y
作为多项式变化。a,b,c
例如,对于给定的一组数据和 2 级,我可能会生成模型
y = a^2 + 2ab - 3cb + c^2 +.5ac
这可以使用最小二乘来完成,并且是 numpy 的 polyfit 例程的轻微扩展。Python 生态系统中的某个地方是否有标准实现?
sklearn 提供了一种简单的方法来做到这一点。
以此处发布的示例为基础:
#X is the independent variable (bivariate in this case)
X = array([[0.44, 0.68], [0.99, 0.23]])
#vector is the dependent data
vector = [109.85, 155.72]
#predict is an independent variable for which we'd like to predict the value
predict= [0.49, 0.18]
#generate a model of polynomial features
poly = PolynomialFeatures(degree=2)
#transform the x data for proper fitting (for single variable type it returns,[1,x,x**2])
X_ = poly.fit_transform(X)
#transform the prediction to fit the model type
predict_ = poly.fit_transform(predict)
#here we can remove polynomial orders we don't want
#for instance I'm removing the `x` component
X_ = np.delete(X_,(1),axis=1)
predict_ = np.delete(predict_,(1),axis=1)
#generate the regression object
clf = linear_model.LinearRegression()
#preform the actual regression
clf.fit(X_, vector)
print("X_ = ",X_)
print("predict_ = ",predict_)
print("Prediction = ",clf.predict(predict_))
这是输出:
>>> X_ = [[ 0.44 0.68 0.1936 0.2992 0.4624]
>>> [ 0.99 0.23 0.9801 0.2277 0.0529]]
>>> predict_ = [[ 0.49 0.18 0.2401 0.0882 0.0324]]
>>> Prediction = [ 126.84247142]
sklearn 有一个很好的例子,在这里使用他们的管道。这是他们示例的核心:
polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)
linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),
("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)
您不需要自己转换数据 - 只需将其传递到管道中。
polyfit 确实有效,但有更好的最小二乘极小化器。我会推荐 kmpfit,可在
http://www.astro.rug.nl/software/kapteyn-beta/kmpfittutorial.html
它比 polyfit 更健壮,并且在他们的页面上有一个示例,展示了如何进行简单的线性拟合,它应该提供进行二阶多项式拟合的基础知识。
def model(p, v, x, w):
a,b,c,d,e,f,g,h,i,j,k = p #coefficients to the polynomials
return a*v**2 + b*x**2 + c*w**2 + d*v*x + e*v*w + f*x*w + g*v + h*x + i*y + k
def residuals(p, data): # Function needed by fit routine
v, x, w, z = data # The values for v, x, w and the measured hypersurface z
a,b,c,d,e,f,g,h,i,j,k = p #coefficients to the polynomials
return (z-model(p,v,x,w)) # Returns an array of residuals.
#This should (z-model(p,v,x,w))/err if
# there are error bars on the measured z values
#initial guess at parameters. Avoid using 0.0 as initial guess
par0 = [1.0, 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
#create a fitting object. data should be in the form
#that the functions above are looking for, i.e. a Nx4
#list of lists/tuples like (v,x,w,z)
fitobj = kmpfit.Fitter(residuals=residuals, data=data)
# call the fitter
fitobj.fit(params0=par0)
这些东西的成功与否密切依赖于适合的起始值,因此请尽可能谨慎选择。有这么多的自由参数,获得解决方案可能是一个挑战。