我正在制作一个程序,该程序根据用户输入的数据绘制一条线。(它基于斜率形式/方程)。我正在使用 Canvas 绘制我的方程式。我一直有一个问题,以一种让它适应缩放的方式绘制方程(这是基于输入的数字有多大。)
当画布缩放时,如何使图形方程(线)适合图形?
这是我的代码:
var c=document.getElementById("graph_");
var ctx=c.getContext("2d");
graph_.style.backgroundColor="white";
// This is used to define the parameters of the canvas. Variables a and b are the x and y intercepts of the linear function.
var z0=Math.max(Math.abs(a),Math.abs(b));
var z=Math.round(z0);
var z1=Math.round(z);
var z2=z*2
// alert(z1);
// alert(z2);`
//The code below is used to properly scale the canvas and lines so they can accomodate larger numbers
var scale = 2*z/360;
var offsetX = 150;
var offsetY = 75
ctx.translate((-c.width /2 * scale) + offsetX,(-c.height / 2 * scale) + offsetY);
ctx.scale(scale,scale);
var lw = scale/2
var xnew = 360/2+360/2*a
var ynew = 360/2-360/2*b
alert(xnew);
alert(ynew);
//The two lines drawn below are the axises of the graph
ctx.lineWidth = 2/lw;
ctx.beginPath()
ctx.moveTo(150, 40000*-1);
ctx.lineTo(150, 40000);
ctx.closePath();
ctx.lineWidth = 1/lw;
ctx.moveTo(400000*-1, 75);
ctx.lineTo(40000, 75);
ctx.strokeStyle = "#8B8682";
ctx.stroke();
ctx.closePath();
//var xmax = 400000 - b
//var xmax1 = xmax/s
//var ymax = 400000*s
//var ymax1 = ymax + b
// The code below graphs the equation.
ctx.beginPath();
ctx.lineWidth = 1/lw;
ctx.moveTo(xnew, 180);
ctx.lineTo(180, ynew);
// ctx.lineTo(xmax, ymax)
// ctx.lineTo(xmax*-1, ymax*-1)
ctx.strokeStyle = "red";
ctx.stroke();
下面是整个页面的代码: 正如你所看到的,如果画线的话,它并没有变得足够长,就像它应该的那样。(线性线总是无限的,所以线应该穿过整个图,而不是一小部分。)
var canwith=360
var canheight=360
// alert(window.innerWidth)
function doSolve() {
var s=''
var x1 = document.getElementById('x1').value
var y1 = document.getElementById('y1').value
var x2 = document.getElementById('x2').value
var y2 = document.getElementById('y2').value
var m
var b
var a
try {
if ((x2 - x1)==0) {
m='Undefined'
b='Undefined'
a=x1
} else {
m = (y2 - y1)/(x2 - x1)
b = (y2-x2*m)
a = (-b/m)
}
s += 'Coordinates are: ('
s += x1
s += ','
s += y1
s += '),('
s += x2
s += ','
s += y2
s += ')'
s += '<br>Slope:'
s += m
s +='<br>y intercept:'
s += b
s += '<br>x intercept:'
s += a
if (m=='undefined') {
s += '<br>Equation: x = ' + x1
} else {
s += '<br>Equation: y = '
if (m!=0) {
if (m!=1) {
s += m + 'x'
} else {
s += 'x'
}
}
if (b!=0) {
if (b>0) {
s += ' + ' + b
} else {
s += ' - ' + b*-1
}
}
}
document.getElementById('outputx').innerHTML=s
} catch (e) {alert(e.message)}
try {
var c=document.getElementById("graph_");
var ctx=c.getContext("2d");
graph_.style.backgroundColor="white";
var z0=Math.max(Math.abs(a),Math.abs(b));
var z=Math.round(z0);
var z1=Math.round(z);
var z2=z*2
// alert(z1);
// alert(z2);
var scale = 2*z/360;
var offsetX = 150;
var offsetY = 75
ctx.translate((-c.width /2 * scale) + offsetX,(-c.height / 2 * scale) + offsetY);
ctx.scale(scale,scale);
var lw = scale/2
var xnew = 360/2+360/2*a
var ynew = 360/2-360/2*b
alert(xnew);
alert(ynew);
ctx.lineWidth = 2/lw;
ctx.beginPath()
ctx.moveTo(150, 40000*-1);
ctx.lineTo(150, 40000);
ctx.closePath();
ctx.lineWidth = 1/lw;
ctx.moveTo(400000*-1, 75);
ctx.lineTo(40000, 75);
ctx.strokeStyle = "#8B8682";
ctx.stroke();
ctx.closePath();
var xmax = 400000 - b
var xmax1 = xmax/s
var ymax = 400000*s
var ymax1 = ymax + b
ctx.beginPath();
ctx.lineWidth = 1/lw;
ctx.moveTo(xnew, 180);
ctx.lineTo(180, ynew);
ctx.lineTo(xmax, ymax)
ctx.lineTo(xmax*-1, ymax*-1)
ctx.strokeStyle = "red";
ctx.stroke();
} catch (e) {alert(e.message)}
}