This topic has been inactive for so long that I believe it's dead. I have a solution though.
However, the left-of test will yield right if the first segment is
chosen as the closest segment, and left otherwise.
You've used slightly ambiguous language. I'm gonna use segments to speak of the line segments in the polyline and quadrants to speak of the areas delimited by them. So in your case, you'd have a red quadrant which seems to be on the right of one segment and on the left of the other.
If the left-of test yields different answers for different segments, you should redo the test on the segments themselves. In your case, you'd have:
- The quadrant is on the RIGHT of the first segment
- The quadrant is on the LEFT of the second segment
Both segments disagree on where the quadrant lies, so you do two further disambiguation tests:
- The second segment is on the RIGHT of the first segment
- The first segment is on the RIGHT of the second segment
This allows us to conclude that the second segment is in between the first segment and the quadrant—since each of those two lies on a different side of the second segment. Therefore, the second segment is "closer" to the quadrant than the first and it's answer to the left-right test should be used as the correct one.
(I'm almost sure you can do with only one of the two disambiguation tests, I've put both in for clarity)
For the sake of completeness: I believe this solution also accounts for your demands of efficiency and elegance, since it uses the same method you've been using from the start (the left-of test), so it meets all the conditions specified: it's elegant, it's efficient and it takes care of the problem.