如何仅使用另一个大小为 N 的队列和有限数量的变量对大小为 N 的队列进行排序?
天真的实现 - 找到队列的最小值并将其推送到空队列,然后找到新的最小值并将其推送等是 O(n^2)。有没有更有效的算法?
我不认为天真的实施会奏效。这是一个队列,所以如果最小的元素不在队列的末尾,你就不能删除它。
我能想到的唯一方法是:始终保持第二个队列排序。1. 从 q1 中删除元素。2. 如果此元素>= q2 的最后一个元素,则将其插入到 q2 中。(这样 q2 仍然排序)。3. 否则,将其插回 q1。继续重复上述步骤,直到 q1 为空。
我的算法:
let the Q size = n,
1 save = getRearValue(1stQ)
2 pop the element from 1st Q and insert it into 2nd Q.
3 if getFrontValue(1stQ) > getRearValue(2ndQ)
4 then goto step 2.
5 else
6 pop the element from 1st Q and insert back into the same Q (1st Q).
7 if (save != getRearValue(1stQ)) goto step 3.
8 if (1st Q not sorted OR getFrontValue(1stQ) > getFrontValue(2ndQ))
9 then
10 pop all elements of 2nd Q and insert into 1st Q (One by one).
11 goto step 1.
12 else
13 pop all elements of 2nd Q and insert into 1st Q (One by one).
14 return 1stQ
这是我认为可能有效的方法:-
该算法使用递归对队列进行排序。
假设我们有一个函数 copy_from 可以从一个队列复制到另一个队列,如下所示:-
void copy_from (ArrayQueue&Q_from,ArrayQueue& Q_to){
while(!Q_from.empty()){
int t= Q_from.front();
Q_to.enqueue(t);
Q_from.dequeue();
}
}
主要排序功能如图:-
void sort(ArrayQueue &Q, int element, ArrayQueue&Q2){
if(Q.size()==1){
if(Q.front()>element){
int front = Q.front();
Q.dequeue();
Q.enqueue(element);
Q.enqueue(front);
}
else{
Q.enqueue(element);
}
}
else{
int front = Q.front();
Q.dequeue();
sort(Q,front); // sort the remaining queue.
int sorted_front = Q.front(); //get front element of sorted queue
if(element<sorted_front){
Q2.enqueue(element);
copy_from(Q,Q2);
copy_from(Q2,Q);
}
else{
// dequeue all elements from the queue which are lesser than element and put it into new queue.
// Then enqueue the new element
// Then enqueue whatevers bigger than element into the queue.
Q2.enqueue(sorted_front);
Q.dequeue();
while(!Q.empty()&&Q.front()<element){
Q2.enqueue(Q.front());
Q.dequeue();
}
Q2.enqueue(element);
copy_from(Q,Q2);
copy_from(Q2,Q);
}
}
}
当我们最初调用排序函数时,我们可以这样调用它:-
Queue Q, Q2;
int front = Q.front();
Q.dequeue();
sort(Q,front,Q2);
如果我们输入为 6->4->9>2->1,则结果将是 9->6->4->2->1。
这是我从头顶想到的一个简单逻辑。最坏情况的运行时间是 O(N^2),而理想情况下最好的情况是 O(N)。我认为可以通过即兴逻辑进一步降低复杂性。
语法是 Javascript,但很好的注释是不言自明的。
我希望这有帮助。
// SORT A QUEUE USING ANOTHER QUEUE
function sortQueueUsingQueue(uq) {
// instantiate required variables
var sq = new Queue();
var t = null, last = null;
// copy the items to a temp queue
// so as not to destroy the original queue
var tq = new Queue(uq);
// loop until input is not empty
while(!tq.isEmpty()) {
t = tq.dequeue();
if (last && last <= t) {
// new element will be at the end of the queue, and we don't have to
// process any further - short-circuit scenario
// this is the best case scenario, constant time operation per new item
sq.enqueue(t);
// also keep track of the last item in the queue,
// which in this case is the new item
last = t;
} else {
// other scenario: linear time operation per new item
// new element will be somewhere in the middle (or beginning) so,
// take elements from the beginning which are less or equal to new item,
// and put them at the back
while(!sq.isEmpty() && sq.peek() <= t) {
sq.enqueue(sq.dequeue());
}
// when that is done, now put the new element into the queue,
// i.e the insertion into the proper place
sq.enqueue(t);
// following which, shift the rest elements to the back of the queue,
// to reconstruct the sorted order,
// thus always keeping the second queue sorted per insertion
while(sq.peek() > t) {
// meanwhile, also keep a track of the last (highest) item in the queue
// so that we may perform a short-circuit if permitted
last = sq.dequeue();
sq.enqueue(last);
}
}
}
return sq;
}
您可以在此处将整个工作代码视为 github要点:https ://gist.github.com/abhishekcghosh/049b50b22e92fefc5124