你的问题有点令人困惑。据我了解,此代码将满足您的需求:
#define PAGESIZE 4096
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <errno.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
struct StoredObject
{
int IntVal;
char StrVal[25];
};
int main(int argc, char **argv)
{
int fd = open("mmapfile", O_RDWR | O_CREAT | O_TRUNC, (mode_t) 0600);
//Set the file to the size of our data (2 pages)
lseek(fd, PAGESIZE*2 - 1, SEEK_SET);
write(fd, "", 1); //The final byte
unsigned char *mapPtr = (unsigned char *) mmap(0, PAGESIZE * 2, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
struct StoredObject controlObject;
controlObject.IntVal = 12;
strcpy(controlObject.StrVal, "Mary had a little lamb.\n");
struct StoredObject *mary1;
mary1 = (struct StoredObject *)(mapPtr + PAGESIZE - 4); //Will fall on the boundary between first and second page
memcpy(mary1, &controlObject, sizeof(StoredObject));
printf("%d, %s", mary1->IntVal, mary1->StrVal);
//Should print "12, Mary had a little lamb.\n"
struct StoredObject *john1;
john1 = mary1 + 1; //Comes immediately after mary1 in memory; will start and end in the second page
memcpy(john1, &controlObject, sizeof(StoredObject));
john1->IntVal = 42;
strcpy(john1->StrVal, "John had a little lamb.\n");
printf("%d, %s", john1->IntVal, john1->StrVal);
//Should print "12, Mary had a little lamb.\n"
//Make sure the data's on the disk, as this is the initial, "read-only" data
msync(mapPtr, PAGESIZE * 2, MS_SYNC);
//This is the inital data set, now in memory, loaded across two pages
//At this point, someone could be reading from there. We don't know or care.
//We want to modify john1, but don't want to write over the existing data
//Easy as pie.
//This is the shadow map. COW-like optimization will take place:
//we'll map the entire address space from the shared source, then overlap with a new map to modify
//This is mapped anywhere, letting the system decide what address we'll be using for the new data pointer
unsigned char *mapPtr2 = (unsigned char *) mmap(0, PAGESIZE * 2, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
//Map the second page on top of the first mapping; this is the one that we're modifying. It is *not* backed by disk
unsigned char *temp = (unsigned char *) mmap(mapPtr2 + PAGESIZE, PAGESIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED | MAP_ANON, 0, 0);
if (temp == MAP_FAILED)
{
printf("Fixed map failed. %s", strerror(errno));
}
assert(temp == mapPtr2 + PAGESIZE);
//Make a copy of the old data that will later be changed
memcpy(mapPtr2 + PAGESIZE, mapPtr + PAGESIZE, PAGESIZE);
//The two address spaces should still be identical until this point
assert(memcmp(mapPtr, mapPtr2, PAGESIZE * 2) == 0);
//We can now make our changes to the second page as needed
struct StoredObject *mary2 = (struct StoredObject *)(((unsigned char *)mary1 - mapPtr) + mapPtr2);
struct StoredObject *john2 = (struct StoredObject *)(((unsigned char *)john1 - mapPtr) + mapPtr2);
john2->IntVal = 52;
strcpy(john2->StrVal, "Mike had a little lamb.\n");
//Test that everything worked OK
assert(memcmp(mary1, mary2, sizeof(struct StoredObject)) == 0);
printf("%d, %s", john2->IntVal, john2->StrVal);
//Should print "52, Mike had a little lamb.\n"
//Now assume our garbage collection routine has detected that no one is using the original copy of the data
munmap(mapPtr, PAGESIZE * 2);
mapPtr = mapPtr2;
//Now we're done with all our work and want to completely clean up
munmap(mapPtr2, PAGESIZE * 2);
close(fd);
return 0;
}
我修改后的答案应该可以解决您的安全问题。仅MAP_FIXED
在第二次mmap
通话时使用(就像我上面所说的那样)。很酷的一点MAP_FIXED
是,它可以让您覆盖现有的mmap
地址部分。它将卸载您重叠的范围并将其替换为您的新映射内容:
MAP_FIXED
[...] If the memory
region specified by addr and len overlaps pages of any existing
mapping(s), then the overlapped part of the existing mapping(s) will be
discarded. [...]
这样,您就可以让操作系统为您找到数百兆的连续内存块(永远不要调用MAP_FIXED
您不确定的地址不可用)。然后你MAP_FIXED
用你将要修改的数据调用现在映射的巨大空间的一个子部分。多田。
在 Windows 上,这样的东西应该可以工作(我现在在 Mac 上,所以未经测试):
int main(int argc, char **argv)
{
HANDLE hFile = CreateFile(L"mmapfile", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
//Set the file to the size of our data (2 pages)
SetFilePointer(hFile, PAGESIZE*2 - 1, 0, FILE_BEGIN);
DWORD bytesWritten = -1;
WriteFile(hFile, "", 1, &bytesWritten, NULL);
HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, PAGESIZE * 2, NULL);
unsigned char *mapPtr = (unsigned char *) MapViewOfFile(hMap, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, PAGESIZE * 2);
struct StoredObject controlObject;
controlObject.IntVal = 12;
strcpy(controlObject.StrVal, "Mary had a little lamb.\n");
struct StoredObject *mary1;
mary1 = (struct StoredObject *)(mapPtr + PAGESIZE - 4); //Will fall on the boundary between first and second page
memcpy(mary1, &controlObject, sizeof(StoredObject));
printf("%d, %s", mary1->IntVal, mary1->StrVal);
//Should print "12, Mary had a little lamb.\n"
struct StoredObject *john1;
john1 = mary1 + 1; //Comes immediately after mary1 in memory; will start and end in the second page
memcpy(john1, &controlObject, sizeof(StoredObject));
john1->IntVal = 42;
strcpy(john1->StrVal, "John had a little lamb.\n");
printf("%d, %s", john1->IntVal, john1->StrVal);
//Should print "12, Mary had a little lamb.\n"
//Make sure the data's on the disk, as this is the initial, "read-only" data
//msync(mapPtr, PAGESIZE * 2, MS_SYNC);
//This is the inital data set, now in memory, loaded across two pages
//At this point, someone could be reading from there. We don't know or care.
//We want to modify john1, but don't want to write over the existing data
//Easy as pie.
//This is the shadow map. COW-like optimization will take place:
//we'll map the entire address space from the shared source, then overlap with a new map to modify
//This is mapped anywhere, letting the system decide what address we'll be using for the new data pointer
unsigned char *reservedMem = (unsigned char *) VirtualAlloc(NULL, PAGESIZE * 2, MEM_RESERVE, PAGE_READWRITE);
HANDLE hMap2 = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, PAGESIZE, NULL);
unsigned char *mapPtr2 = (unsigned char *) MapViewOfFileEx(hMap2, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, PAGESIZE, reservedMem);
//Map the second page on top of the first mapping; this is the one that we're modifying. It is *not* backed by disk
unsigned char *temp = (unsigned char *) MapViewOfFileEx(hMap2, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, PAGESIZE, reservedMem + PAGESIZE);
if (temp == NULL)
{
printf("Fixed map failed. 0x%x\n", GetLastError());
return -1;
}
assert(temp == mapPtr2 + PAGESIZE);
//Make a copy of the old data that will later be changed
memcpy(mapPtr2 + PAGESIZE, mapPtr + PAGESIZE, PAGESIZE);
//The two address spaces should still be identical until this point
assert(memcmp(mapPtr, mapPtr2, PAGESIZE * 2) == 0);
//We can now make our changes to the second page as needed
struct StoredObject *mary2 = (struct StoredObject *)(((unsigned char *)mary1 - mapPtr) + mapPtr2);
struct StoredObject *john2 = (struct StoredObject *)(((unsigned char *)john1 - mapPtr) + mapPtr2);
john2->IntVal = 52;
strcpy(john2->StrVal, "Mike had a little lamb.\n");
//Test that everything worked OK
assert(memcmp(mary1, mary2, sizeof(struct StoredObject)) == 0);
printf("%d, %s", john2->IntVal, john2->StrVal);
//Should print "52, Mike had a little lamb.\n"
//Now assume our garbage collection routine has detected that no one is using the original copy of the data
//munmap(mapPtr, PAGESIZE * 2);
mapPtr = mapPtr2;
//Now we're done with all our work and want to completely clean up
//munmap(mapPtr2, PAGESIZE * 2);
//close(fd);
return 0;
}