我正在尝试使用卡方(scikit-learn 0.10)选择最佳功能。从总共 80 个训练文档中,我首先提取 227 个特征,然后从这 227 个特征中选择前 10 个。
my_vectorizer = CountVectorizer(analyzer=MyAnalyzer())
X_train = my_vectorizer.fit_transform(train_data)
X_test = my_vectorizer.transform(test_data)
Y_train = np.array(train_labels)
Y_test = np.array(test_labels)
X_train = np.clip(X_train.toarray(), 0, 1)
X_test = np.clip(X_test.toarray(), 0, 1)
ch2 = SelectKBest(chi2, k=10)
print X_train.shape
X_train = ch2.fit_transform(X_train, Y_train)
print X_train.shape
结果如下。
(80, 227)
(80, 14)
k
如果我设置为 ,它们是相似的100
。
(80, 227)
(80, 227)
为什么会这样?
*编辑:一个完整的输出示例,现在没有剪辑,我请求 30 并得到 32 代替:
Train instances: 9 Test instances: 1
Feature extraction...
X_train:
[[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0]
[0 0 2 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1]
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0]]
Y_train:
[0 0 0 0 0 0 0 0 1]
32 features extracted from 9 training documents.
Feature selection...
(9, 32)
(9, 32)
Using 32(requested:30) best features from 9 training documents
get support:
[ True True True True True True True True True True True True
True True True True True True True True True True True True
True True True True True True True True]
get support with vocabulary :
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31]
Training...
/usr/local/lib/python2.6/dist-packages/scikit_learn-0.10-py2.6-linux-x86_64.egg/sklearn/svm/sparse/base.py:23: FutureWarning: SVM: scale_C will be True by default in scikit-learn 0.11
scale_C)
Classifying...
另一个没有剪裁的例子,我请求 10 并得到 11:
Train instances: 9 Test instances: 1
Feature extraction...
X_train:
[[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0]
[0 0 2 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1]
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0]]
Y_train:
[0 0 0 0 0 0 0 0 1]
32 features extracted from 9 training documents.
Feature selection...
(9, 32)
(9, 11)
Using 11(requested:10) best features from 9 training documents
get support:
[ True True True False False True False False False False True False
False False True False False False True False True False True True
False False False False True False False False]
get support with vocabulary :
[ 0 1 2 5 10 14 18 20 22 23 28]
Training...
/usr/local/lib/python2.6/dist-packages/scikit_learn-0.10-py2.6-linux-x86_64.egg/sklearn/svm/sparse/base.py:23: FutureWarning: SVM: scale_C will be True by default in scikit-learn 0.11
scale_C)
Classifying...