5

主要任务是消除叶子的复杂背景,并在 MATLAB 中从遮挡的叶子图像中提取目标叶子。为了消除背景,我应用了 K-means 聚类算法。现在的主要任务是使用分水岭分割算法从被遮挡的叶子中分割出叶子。我无法为每一片叶子找到完美的片段。请帮我。我已经上传了示例图像和分水岭分割代码。

原始图像 在此处输入图像描述

使用K-Means聚类算法消除背景后的图像和叠加在原始图像上的分水岭分割 在此处输入图像描述

我希望主要的中间叶子是一个片段,以便我可以提取它。

我在下面给出了分水岭分割代码

function wateralgo(img)

F=imread(img);

F=im2double(F);

%Converting RGB image to Intensity Image
r=F(:,:,1);
g=F(:,:,2);
b=F(:,:,3);
I=(r+g+b)/3;
imshow(I);

%Applying Gradient
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');
Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);
figure, imshow(gradmag,[]), title('Gradient magnitude (gradmag)');

L = watershed(gradmag);
Lrgb = label2rgb(L);
figure, imshow(Lrgb), title('Watershed transform of gradient magnitude (Lrgb)');

se = strel('disk',20);
Io = imopen(I, se);
figure, imshow(Io), title('Opening (Io)');
Ie = imerode(I, se);
Iobr = imreconstruct(Ie, I);
figure, imshow(Iobr), title('Opening-by-reconstruction (Iobr)');

Ioc = imclose(Io, se);
figure, imshow(Ioc), title('Opening-closing (Ioc)');

Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);
figure, imshow(Iobrcbr), title('Opening-closing by reconstruction (Iobrcbr)');

fgm = imregionalmin(Iobrcbr);
figure, imshow(fgm), title('Regional maxima of opening-closing by reconstruction (fgm)');

I2 = I;
I2(fgm) = 255;
figure, imshow(I2), title('Regional maxima superimposed on original image (I2)');

se2 = strel(ones(7,7));
fgm2 = imclose(fgm, se2);
fgm3 = imerode(fgm2, se2);
fgm4 = bwareaopen(fgm3, 20);
I3 = I;
I3(fgm4) = 255;
figure, imshow(I3), title('Modified regional maxima superimposed on original image (fgm4)');

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));
figure, imshow(bw), title('Thresholded opening-closing by reconstruction (bw)');

D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;
figure, imshow(bgm), title('Watershed ridge lines (bgm)');

gradmag2 = imimposemin(gradmag, bgm | fgm4);
L = watershed(gradmag2);
I4 = I;
I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;
figure, imshow(I4), title('Markers and object boundaries superimposed on original image (I4)');

Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');
figure, imshow(Lrgb), title('Colored watershed label matrix (Lrgb)');

figure, imshow(I), hold on
himage = imshow(Lrgb);
set(himage, 'AlphaData', 0.3);
title('Lrgb superimposed transparently on original image');
end
4

2 回答 2

2

我认为您应该尝试前景提取算法而不是一般分割。一种这样的算法是GrabCut。另一件有用的事情是在尝试提取前景对象之前,在图像表示中实现某种程度的照明变化。一种方法是在Chong 色彩空间中工作。

于 2012-05-08T08:30:21.393 回答
0

如果用户可以进行任何交互,那么使用 GrabCut(如 @Victor May 所述)或更基本的交互式图形切割,您的分割会更好。

否则,自动分割很难完美适用于各种图像。也许您可以尝试一些后处理,其中基于相似性度量(或基于两个段之间的梯度强度?)比较和合并相邻区域。

于 2012-05-30T15:25:18.387 回答