我有一个data.table
如下:
name day wages hour colour
1 Ann 1 100 6 Green
2 Ann 1 150 18 Blue
3 Ann 2 200 10 Blue
4 Ann 3 150 10 Green
5 Bob 1 100 11 Red
6 Bob 1 200 17 Red
7 Bob 1 150 20 Green
8 Bob 2 100 11 Red
我想知道,对于每个唯一的名称/日期对,对于四个时间段之一,一些事实。我关心的时间段是:
t1 (hour < 9)
t2 (hour < 17)
t3 (hour > 9)
t4 (hour > 17)
一些事实示例可能是:
wages > 175
colour = "Green"
我可以使用以下data.table
过滤器完成此操作
setkey(dt,name,day)
result <- dt[,list(wages.t1=sum(wages>175&hour<9),
wages.t2=sum(wages>175&hour<17),
wages.t3=sum(wages>175&hour>9),
wages.t4=sum(wages>175&hour>17),
green.t1=sum(colour=="Green"&hour<9),
green.t2=sum(colour=="Green"&hour<17),
green.t3=sum(colour=="Green"&hour>9),
green.t4=sum(colour=="Green"&hour>17)),
列表(姓名,日期)]
给我
name day wages.t1 wages.t2 wages.t3 wages.t4 green.t1 green.t2 green.t3 green.t4
[1,] Ann 1 0 0 0 0 1 1 0 0
[2,] Ann 2 0 1 1 0 0 0 0 0
[3,] Ann 3 0 0 0 0 0 1 1 0
[4,] Bob 1 0 0 1 0 0 0 1 1
[5,] Bob 2 0 0 0 0 0 0 0 0
但这 a) 读写起来很糟糕,b) 似乎效率低下。
关于如何做得更好的任何提示?请注意,在我的真实场景中,我有数十万行、四个时间段和每个时间段 30-35 个事实。
-- 创建代码dt
dt = data.table(
name = factor(c("Ann", "Ann", "Ann", "Ann",
"Bob", "Bob", "Bob", "Bob")),
day = c(1, 1, 2, 3, 1, 1, 1, 2),
wages = c(100, 150, 200, 150, 100, 200, 150, 100),
hour = c(6, 18, 10, 10, 11, 17, 20, 11),
colour = c("Green", "Blue", "Blue", "Green", "Red",
"Red", "Green", "Red")
)