在 C# 中满足以下要求的最现代(最佳)方式是什么?
string encryptedString = SomeStaticClass.Encrypt(sourceString);
string decryptedString = SomeStaticClass.Decrypt(encryptedString);
但是,在涉及盐、密钥、处理 byte[] 等方面的小题大做。
一直在谷歌上搜索并对我的发现感到困惑(您可以查看类似 SO Q 的列表,以了解这是一个具有欺骗性的问题)。
在 C# 中满足以下要求的最现代(最佳)方式是什么?
string encryptedString = SomeStaticClass.Encrypt(sourceString);
string decryptedString = SomeStaticClass.Decrypt(encryptedString);
但是,在涉及盐、密钥、处理 byte[] 等方面的小题大做。
一直在谷歌上搜索并对我的发现感到困惑(您可以查看类似 SO Q 的列表,以了解这是一个具有欺骗性的问题)。
2015 年 12 月 23 日更新:由于这个答案似乎得到了很多人的支持,我对其进行了更新以修复愚蠢的错误,并根据评论和反馈总体改进代码。有关具体改进的列表,请参阅帖子末尾。
正如其他人所说,密码学并不简单,所以最好避免“滚动你自己的”加密算法。
但是,您可以围绕内置RijndaelManaged
加密类之类的东西“滚动您自己的”包装类。
Rijndael 是当前Advanced Encryption Standard的算法名称,因此您肯定使用的算法可以被视为“最佳实践”。
该类RijndaelManaged
通常确实需要您“搞砸”字节数组、盐、键、初始化向量等,但这正是可以在“包装”类中抽象出来的那种细节。
下面的类是我前段时间写的,用来执行你所追求的那种事情,一个简单的单一方法调用,允许使用基于字符串的密码加密一些基于字符串的纯文本,得到的加密字符串也被表示为一个字符串。当然,有一种等效的方法可以用相同的密码解密加密的字符串。
与此代码的第一个版本每次都使用完全相同的 salt 和 IV 值不同,这个新版本每次都会生成随机的 salt 和 IV 值。由于在给定字符串的加密和解密之间盐和 IV 必须相同,因此盐和 IV 在加密时被添加到密文中,并再次从中提取以执行解密。这样做的结果是,用完全相同的密码加密完全相同的明文每次都会得到完全不同的密文结果。
使用它的“强度”来自于使用RijndaelManaged
类为您执行加密,以及使用命名空间的Rfc2898DeriveBytes函数,该函数将使用基于字符串的标准和安全算法(特别是PBKDF2System.Security.Cryptography
)生成您的加密密钥-基于您提供的密码。(注意这是对第一个版本使用旧 PBKDF1 算法的改进)。
最后,需要注意的是,这仍然是未经身份验证的加密。单独的加密仅提供隐私(即消息不为第三方所知),而经过身份验证的加密旨在提供隐私和真实性(即接收者知道消息是由发送者发送的)。
在不知道您的确切要求的情况下,很难说这里的代码是否足够安全以满足您的需求,但是,它的产生是为了在实现的相对简单性与“质量”之间提供良好的平衡。例如,如果加密字符串的“接收者”直接从受信任的“发送者”接收字符串,则可能甚至不需要身份验证。
如果您需要更复杂的东西,并且提供经过身份验证的加密,请查看这篇文章以获取实现。
这是代码:
using System;
using System.Text;
using System.Security.Cryptography;
using System.IO;
using System.Linq;
namespace EncryptStringSample
{
public static class StringCipher
{
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 256;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = Generate256BitsOfRandomEntropy();
var ivStringBytes = Generate256BitsOfRandomEntropy();
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
var plainTextBytes = new byte[cipherTextBytes.Length];
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
}
}
}
private static byte[] Generate256BitsOfRandomEntropy()
{
var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
}
}
上面的类可以非常简单地使用类似于以下的代码:
using System;
namespace EncryptStringSample
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Please enter a password to use:");
string password = Console.ReadLine();
Console.WriteLine("Please enter a string to encrypt:");
string plaintext = Console.ReadLine();
Console.WriteLine("");
Console.WriteLine("Your encrypted string is:");
string encryptedstring = StringCipher.Encrypt(plaintext, password);
Console.WriteLine(encryptedstring);
Console.WriteLine("");
Console.WriteLine("Your decrypted string is:");
string decryptedstring = StringCipher.Decrypt(encryptedstring, password);
Console.WriteLine(decryptedstring);
Console.WriteLine("");
Console.WriteLine("Press any key to exit...");
Console.ReadLine();
}
}
}
(您可以在此处下载一个简单的 VS2013 示例解决方案(包括一些单元测试))。
2015 年 12 月 23 日更新: 代码的具体改进列表如下:
using System.IO;
using System.Text;
using System.Security.Cryptography;
public static class EncryptionHelper
{
public static string Encrypt(string clearText)
{
string EncryptionKey = "abc123";
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
public static string Decrypt(string cipherText)
{
string EncryptionKey = "abc123";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
}
如果您的目标是尚不支持的 ASP.NET Core,则RijndaelManaged
可以使用IDataProtectionProvider
.
首先,配置您的应用程序以使用数据保护:
public class Startup
{
public void ConfigureServices(IServiceCollection services)
{
services.AddDataProtection();
}
// ...
}
然后您将能够注入IDataProtectionProvider
实例并使用它来加密/解密数据:
public class MyService : IService
{
private const string Purpose = "my protection purpose";
private readonly IDataProtectionProvider _provider;
public MyService(IDataProtectionProvider provider)
{
_provider = provider;
}
public string Encrypt(string plainText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Protect(plainText);
}
public string Decrypt(string cipherText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Unprotect(cipherText);
}
}
有关更多详细信息,请参阅本文。
试试这个类:
public class DataEncryptor
{
TripleDESCryptoServiceProvider symm;
#region Factory
public DataEncryptor()
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
}
public DataEncryptor(TripleDESCryptoServiceProvider keys)
{
this.symm = keys;
}
public DataEncryptor(byte[] key, byte[] iv)
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
this.symm.Key = key;
this.symm.IV = iv;
}
#endregion
#region Properties
public TripleDESCryptoServiceProvider Algorithm
{
get { return symm; }
set { symm = value; }
}
public byte[] Key
{
get { return symm.Key; }
set { symm.Key = value; }
}
public byte[] IV
{
get { return symm.IV; }
set { symm.IV = value; }
}
#endregion
#region Crypto
public byte[] Encrypt(byte[] data) { return Encrypt(data, data.Length); }
public byte[] Encrypt(byte[] data, int length)
{
try
{
// Create a MemoryStream.
var ms = new MemoryStream();
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
var cs = new CryptoStream(ms,
symm.CreateEncryptor(symm.Key, symm.IV),
CryptoStreamMode.Write);
// Write the byte array to the crypto stream and flush it.
cs.Write(data, 0, length);
cs.FlushFinalBlock();
// Get an array of bytes from the
// MemoryStream that holds the
// encrypted data.
byte[] ret = ms.ToArray();
// Close the streams.
cs.Close();
ms.Close();
// Return the encrypted buffer.
return ret;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}
public string EncryptString(string text)
{
return Convert.ToBase64String(Encrypt(Encoding.UTF8.GetBytes(text)));
}
public byte[] Decrypt(byte[] data) { return Decrypt(data, data.Length); }
public byte[] Decrypt(byte[] data, int length)
{
try
{
// Create a new MemoryStream using the passed
// array of encrypted data.
MemoryStream ms = new MemoryStream(data);
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream cs = new CryptoStream(ms,
symm.CreateDecryptor(symm.Key, symm.IV),
CryptoStreamMode.Read);
// Create buffer to hold the decrypted data.
byte[] result = new byte[length];
// Read the decrypted data out of the crypto stream
// and place it into the temporary buffer.
cs.Read(result, 0, result.Length);
return result;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}
public string DecryptString(string data)
{
return Encoding.UTF8.GetString(Decrypt(Convert.FromBase64String(data))).TrimEnd('\0');
}
#endregion
}
并像这样使用它:
string message="A very secret message here.";
DataEncryptor keys=new DataEncryptor();
string encr=keys.EncryptString(message);
// later
string actual=keys.DecryptString(encr);
如果您需要将密码存储在内存中并希望对其进行加密,您应该使用SecureString:
http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx
对于更一般的用途,我会使用 FIPS 批准的算法,例如高级加密标准,以前称为 Rijndael。有关实现示例,请参见此页面:
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndael.aspx
您可能正在寻找ProtectedData
使用用户登录凭据加密数据的类。
我见过的最简单的加密方法是通过 RSA
查看上面的 MSDN:http: //msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.aspx
它确实涉及使用字节,但是归根结底,您确实希望加密和解密很难弄清楚,否则很容易被破解。