您可以尝试通过将训练数据(约 50 张 1s、2s、3s....9s 的图像)上传到demo.nanonets.ai(免费使用)来构建模型
1) 在此处上传您的训练数据:
演示.nanonets.ai
2)然后使用以下(Python代码)查询API:
import requests
import json
import urllib
model_name = "Enter-Your-Model-Name-Here"
url = "http://images.clipartpanda.com/number-one-clipart-847-blue-number-one-clip-art.png"
files = {'uploadfile': urllib.urlopen(url).read()}
url = "http://demo.nanonets.ai/classify/?appId="+model_name
r = requests.post(url, files=files)
print json.loads(r.content)
3)响应看起来像:
{
"message": "Model trained",
"result": [
{
"label": "1",
"probability": 0.95
},
{
"label": "2",
"probability": 0.01
},
....
{
"label": "9",
"probability": 0.005
}
]
}