4

我正在尝试用 Java 实现前馈神经网络。我创建了三个类 NNeuron、NLayer 和 NNetwork。“简单”的计算似乎很好(我得到了正确的总和/激活/输出),但是在训练过程中,我似乎没有得到正确的结果。谁能告诉我我做错了什么?NNetwork 类的整个代码很长,所以我发布了导致问题的部分:[编辑]:这实际上几乎是 NNetwork 类的全部

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class NNetwork
{
    public static final double defaultLearningRate = 0.4;
    public static final double defaultMomentum = 0.8;

    private NLayer inputLayer;
    private ArrayList<NLayer> hiddenLayers;
    private NLayer outputLayer;

    private ArrayList<NLayer> layers;

    private double momentum = NNetwork1.defaultMomentum;    // alpha: momentum, default! 0.3

    private ArrayList<Double> learningRates;

    public NNetwork (int nInputs, int nOutputs, Integer... neuronsPerHiddenLayer)
    {
        this(nInputs, nOutputs, Arrays.asList(neuronsPerHiddenLayer));
    }

    public NNetwork (int nInputs, int nOutputs, List<Integer> neuronsPerHiddenLayer)
    {
        // the number of neurons on the last layer build so far (i.e. the number of inputs for each neuron of the next layer)
        int prvOuts = 1;

        this.layers = new ArrayList<>();

        // input layer
        this.inputLayer = new NLayer(nInputs, prvOuts, this);
        this.inputLayer.setAllWeightsTo(1.0);
        this.inputLayer.setAllBiasesTo(0.0);
        this.inputLayer.useSigmaForOutput(false);
        prvOuts = nInputs;
        this.layers.add(this.inputLayer);

        // hidden layers
        this.hiddenLayers = new ArrayList<>();
        for (int i=0 ; i<neuronsPerHiddenLayer.size() ; i++)
        {
            this.hiddenLayers.add(new NLayer(neuronsPerHiddenLayer.get(i), prvOuts, this));
            prvOuts = neuronsPerHiddenLayer.get(i);
        }
        this.layers.addAll(this.hiddenLayers);

        // output layer
        this.outputLayer = new NLayer(nOutputs, prvOuts, this);
        this.layers.add(this.outputLayer);

        this.initCoeffs();
    }

    private void initCoeffs ()
    {
        this.learningRates = new ArrayList<>();
        // learning rates of the hidden layers
        for (int i=0 ; i<this.hiddenLayers.size(); i++)
            this.learningRates.add(NNetwork1.defaultLearningRate);

        // learning rate of the output layer
        this.learningRates.add(NNetwork1.defaultLearningRate);
    }

    public double getLearningRate (int layerIndex)
    {
        if (layerIndex > 0 && layerIndex <= this.hiddenLayers.size()+1)
        {
            return this.learningRates.get(layerIndex-1);
        }
        else
        {
            return 0;
        }
    }

    public ArrayList<Double> getLearningRates ()
    {
        return this.learningRates;
    }

    public void setLearningRate (int layerIndex, double newLearningRate)
    {
        if (layerIndex > 0 && layerIndex <= this.hiddenLayers.size()+1)
        {
            this.learningRates.set(
                    layerIndex-1,
                    newLearningRate);
        }
    }

    public void setLearningRates (Double... newLearningRates)
    {
        this.setLearningRates(Arrays.asList(newLearningRates));
    }

    public void setLearningRates (List<Double> newLearningRates)
    {
        int len = (this.learningRates.size() <= newLearningRates.size())
                ? this.learningRates.size()
                : newLearningRates.size();

        for (int i=0; i<len; i++)
            this.learningRates
                    .set(i,
                    newLearningRates.get(i));
    }

    public double getMomentum ()
    {
        return this.momentum;
    }

    public void setMomentum (double momentum)
    {
        this.momentum = momentum;
    }

    public NNeuron getNeuron (int layerIndex, int neuronIndex)
    {
        if (layerIndex == 0)
            return this.inputLayer.getNeurons().get(neuronIndex);
        else if (layerIndex == this.hiddenLayers.size()+1)
            return this.outputLayer.getNeurons().get(neuronIndex);
        else
            return this.hiddenLayers.get(layerIndex-1).getNeurons().get(neuronIndex);
    }

    public ArrayList<Double> getOutput (ArrayList<Double> inputs)
    {
        ArrayList<Double> lastOuts = inputs;    // the last computed outputs of the last 'called' layer so far

        // input layer
        //lastOuts = this.inputLayer.getOutput(lastOuts);
        lastOuts = this.getInputLayerOutputs(lastOuts);

        // hidden layers
        for (NLayer layer : this.hiddenLayers)
            lastOuts = layer.getOutput(lastOuts);

        // output layer
        lastOuts = this.outputLayer.getOutput(lastOuts);

        return lastOuts;
    }

    public ArrayList<ArrayList<Double>> getAllOutputs (ArrayList<Double> inputs)
    {
        ArrayList<ArrayList<Double>> outs = new ArrayList<>();

        // input layer
        outs.add(this.getInputLayerOutputs(inputs));

        // hidden layers
        for (NLayer layer : this.hiddenLayers)
            outs.add(layer.getOutput(outs.get(outs.size()-1)));

        // output layer
        outs.add(this.outputLayer.getOutput(outs.get(outs.size()-1)));

        return outs;
    }

    public ArrayList<ArrayList<Double>> getAllSums (ArrayList<Double> inputs)
    {
        //*
        ArrayList<ArrayList<Double>> sums = new ArrayList<>();
        ArrayList<Double> lastOut;

        // input layer
        sums.add(inputs);
        lastOut = this.getInputLayerOutputs(inputs);

        // hidden nodes
        for (NLayer layer : this.hiddenLayers)
        {
            sums.add(layer.getSums(lastOut));

            lastOut = layer.getOutput(lastOut);
        }

        // output layer
        sums.add(this.outputLayer.getSums(lastOut));

        return sums;
    }

    public ArrayList<Double> getInputLayerOutputs (ArrayList<Double> inputs)
    {
        ArrayList<Double> outs = new ArrayList<>();
        for (int i=0 ; i<this.inputLayer.getNeurons().size() ; i++)
            outs.add(this
                    .inputLayer
                    .getNeuron(i)
                    .getOutput(inputs.get(i)));
        return outs;
    }

    public void changeWeights (
            ArrayList<ArrayList<Double>> deltaW,
            ArrayList<ArrayList<Double>> inputSet,
            ArrayList<ArrayList<Double>> targetSet,
            boolean checkError)
    {
        for (int i=0 ; i<deltaW.size()-1 ; i++)
            this.hiddenLayers.get(i).changeWeights(deltaW.get(i), inputSet, targetSet, checkError);

        this.outputLayer.changeWeights(deltaW.get(deltaW.size()-1), inputSet, targetSet, checkError);

    }

    public int train2 (
            ArrayList<ArrayList<Double>> inputSet,
            ArrayList<ArrayList<Double>> targetSet,
            double maxError,
            int maxIterations)
    {
        ArrayList<Double>
                input,
                target;

        ArrayList<ArrayList<ArrayList<Double>>> prvNetworkDeltaW = null;

        double error;

        int i = 0, j = 0, traininSetLength = inputSet.size();
        do  // during each itreration...
        {
            error  = 0.0;
            for (j = 0; j < traininSetLength; j++)  // ... for each training element...
            {
                input = inputSet.get(j);
                target = targetSet.get(j);
                prvNetworkDeltaW = this.train2_bp(input, target, prvNetworkDeltaW); // ... do backpropagation, and return the new weight deltas

                error += this.getInputMeanSquareError(input, target);
            }

            i++;
        } while (error > maxError && i < maxIterations);    // iterate as much as necessary/possible

        return i;
    }

    public ArrayList<ArrayList<ArrayList<Double>>> train2_bp (
            ArrayList<Double> input,
            ArrayList<Double> target,
            ArrayList<ArrayList<ArrayList<Double>>> prvNetworkDeltaW)
    {
        ArrayList<ArrayList<Double>> layerSums = this.getAllSums(input);        // the sums for each layer
        ArrayList<ArrayList<Double>> layerOutputs = this.getAllOutputs(input);  // the outputs of each layer

        // get the layer deltas (inc the input layer that is null)
        ArrayList<ArrayList<Double>> layerDeltas = this.train2_getLayerDeltas(layerSums, layerOutputs, target);

        // get the weight deltas
        ArrayList<ArrayList<ArrayList<Double>>> networkDeltaW = this.train2_getWeightDeltas(layerOutputs, layerDeltas, prvNetworkDeltaW);

        // change the weights
        this.train2_updateWeights(networkDeltaW);

        return networkDeltaW;
    }

    public void train2_updateWeights (ArrayList<ArrayList<ArrayList<Double>>> networkDeltaW)
    {
        for (int i=1; i<this.layers.size(); i++)
            this.layers.get(i).train2_updateWeights(networkDeltaW.get(i));
    }

    public ArrayList<ArrayList<ArrayList<Double>>> train2_getWeightDeltas (
            ArrayList<ArrayList<Double>>            layerOutputs,
            ArrayList<ArrayList<Double>>            layerDeltas,
            ArrayList<ArrayList<ArrayList<Double>>> prvNetworkDeltaW)
    {
        ArrayList<ArrayList<ArrayList<Double>>> networkDeltaW = new ArrayList<>(this.layers.size());
                ArrayList<ArrayList<Double>>  layerDeltaW;
                            ArrayList<Double>   neuronDeltaW;

        for (int i=0; i<this.layers.size(); i++)
            networkDeltaW.add(new ArrayList<ArrayList<Double>>());

        double
                deltaW, x, learningRate, prvDeltaW, d;

        int i, j, k;
        for (i=this.layers.size()-1; i>0; i--)  // for each layer
        {
            learningRate = this.getLearningRate(i);

            layerDeltaW = new ArrayList<>();
            networkDeltaW.set(i, layerDeltaW);

            for (j=0; j<this.layers.get(i).getNeurons().size(); j++)    // for each neuron of this layer
            {
                neuronDeltaW = new ArrayList<>();
                layerDeltaW.add(neuronDeltaW);

                for (k=0; k<this.layers.get(i-1).getNeurons().size(); k++)  // for each weight (i.e. each neuron of the previous layer)
                {
                    d = layerDeltas.get(i).get(j);
                    x = layerOutputs.get(i-1).get(k);
                    prvDeltaW = (prvNetworkDeltaW != null)
                            ? prvNetworkDeltaW.get(i).get(j).get(k)
                            : 0.0;

                    deltaW = -learningRate * d * x + this.momentum * prvDeltaW;

                    neuronDeltaW.add(deltaW);
                }

                // the bias !!
                d = layerDeltas.get(i).get(j);
                x = 1;
                prvDeltaW = (prvNetworkDeltaW != null)
                        ? prvNetworkDeltaW.get(i).get(j).get(prvNetworkDeltaW.get(i).get(j).size()-1)
                        : 0.0;

                deltaW = -learningRate * d * x + this.momentum * prvDeltaW;

                neuronDeltaW.add(deltaW);
            }
        }

        return networkDeltaW;
    }

    ArrayList<ArrayList<Double>> train2_getLayerDeltas (
            ArrayList<ArrayList<Double>>    layerSums,
            ArrayList<ArrayList<Double>>    layerOutputs,
            ArrayList<Double>               target)
    {
        // get ouput deltas
        ArrayList<Double> outputDeltas = new ArrayList<>(); // the output layer deltas
        double
                oErr,   // output error given a target
                s,  // sum
                o,  // output
                d;  // delta
        int
                nOutputs = target.size(),   // @TODO ?== this.outputLayer.size()
                nLayers = this.hiddenLayers.size()+2;   // @TODO ?== layerOutputs.size()

        for (int i=0; i<nOutputs; i++)  // for each neuron...
        {
            s = layerSums.get(nLayers-1).get(i);
            o = layerOutputs.get(nLayers-1).get(i);
            oErr = (target.get(i) - o);
            d = -oErr * this.getNeuron(nLayers-1, i).sigmaPrime(s); // @TODO "s" or "o" ??

            outputDeltas.add(d);
        }

        // get hidden deltas
        ArrayList<ArrayList<Double>> hiddenDeltas = new ArrayList<>();
        for (int i=0; i<this.hiddenLayers.size(); i++)
            hiddenDeltas.add(new ArrayList<Double>());

        NLayer nextLayer = this.outputLayer;
        ArrayList<Double> nextDeltas = outputDeltas;

        int
                h, k,
                nHidden = this.hiddenLayers.size(),
                nNeurons = this.hiddenLayers.get(nHidden-1).getNeurons().size();
        double
                wdSum = 0.0;
        for (int i=nHidden-1; i>=0; i--)    // for each hidden layer
        {
            hiddenDeltas.set(i, new ArrayList<Double>());
            for (h=0; h<nNeurons; h++)
            {
                wdSum = 0.0;
                for (k=0; k<nextLayer.getNeurons().size(); k++)
                {
                    wdSum += nextLayer.getNeuron(k).getWeight(h) * nextDeltas.get(k);
                }

                s = layerSums.get(i+1).get(h);
                d = this.getNeuron(i+1, h).sigmaPrime(s) * wdSum;

                hiddenDeltas.get(i).add(d);
            }

            nextLayer = this.hiddenLayers.get(i);
            nextDeltas = hiddenDeltas.get(i);
        }

        ArrayList<ArrayList<Double>> deltas = new ArrayList<>();

        // input layer deltas: void
        deltas.add(null);

        // hidden layers deltas
        deltas.addAll(hiddenDeltas);

        // output layer deltas
        deltas.add(outputDeltas);

        return deltas;
    }

    public double getInputMeanSquareError (ArrayList<Double> input, ArrayList<Double> target)
    {
        double diff, mse=0.0;
        ArrayList<Double> output = this.getOutput(input);
        for (int i=0; i<target.size(); i++)
        {
            diff = target.get(i) - output.get(i);
            mse += (diff * diff);
        }

        mse /= 2.0;

        return mse;
    }

}

某些方法的名称(及其返回值/类型)是不言自明的,例如“this.getAllSums”返回每一层的总和(每个神经元的 sum(x_i*w_i)),“this.getAllOutputs”返回每层的输出(每个神经元的 sigmoid(sum))和返回第 i 层的第 j 个神经元的“this.getNeuron(i,j)”。

预先感谢您的帮助 :)

4

2 回答 2

6

这是一个非常简单的 java 实现,在 main 方法中进行了测试:

import java.util.Arrays;
import java.util.Random;

public class MLP {

 public static class MLPLayer {

  float[] output;
  float[] input;
  float[] weights;
  float[] dweights;
  boolean isSigmoid = true;

  public MLPLayer(int inputSize, int outputSize, Random r) {
   output = new float[outputSize];
   input = new float[inputSize + 1];
   weights = new float[(1 + inputSize) * outputSize];
   dweights = new float[weights.length];
   initWeights(r);
  }

  public void setIsSigmoid(boolean isSigmoid) {
   this.isSigmoid = isSigmoid;
  }

  public void initWeights(Random r) {
   for (int i = 0; i < weights.length; i++) {
    weights[i] = (r.nextFloat() - 0.5f) * 4f;
   }
  }

  public float[] run(float[] in) {
   System.arraycopy(in, 0, input, 0, in.length);
   input[input.length - 1] = 1;
   int offs = 0;
   Arrays.fill(output, 0);
   for (int i = 0; i < output.length; i++) {
    for (int j = 0; j < input.length; j++) {
     output[i] += weights[offs + j] * input[j];
    }
    if (isSigmoid) {
     output[i] = (float) (1 / (1 + Math.exp(-output[i])));
    }
    offs += input.length;
   }
   return Arrays.copyOf(output, output.length);
  }

  public float[] train(float[] error, float learningRate, float momentum) {
   int offs = 0;
   float[] nextError = new float[input.length];
   for (int i = 0; i < output.length; i++) {
    float d = error[i];
    if (isSigmoid) {
     d *= output[i] * (1 - output[i]);
    }
    for (int j = 0; j < input.length; j++) {
     int idx = offs + j;
     nextError[j] += weights[idx] * d;
     float dw = input[j] * d * learningRate;
     weights[idx] += dweights[idx] * momentum + dw;
     dweights[idx] = dw;
    }
    offs += input.length;
   }
   return nextError;
  }
 }
 MLPLayer[] layers;

 public MLP(int inputSize, int[] layersSize) {
  layers = new MLPLayer[layersSize.length];
  Random r = new Random(1234);
  for (int i = 0; i < layersSize.length; i++) {
   int inSize = i == 0 ? inputSize : layersSize[i - 1];
   layers[i] = new MLPLayer(inSize, layersSize[i], r);
  }
 }

 public MLPLayer getLayer(int idx) {
  return layers[idx];
 }

 public float[] run(float[] input) {
  float[] actIn = input;
  for (int i = 0; i < layers.length; i++) {
   actIn = layers[i].run(actIn);
  }
  return actIn;
 }

 public void train(float[] input, float[] targetOutput, float learningRate, float momentum) {
  float[] calcOut = run(input);
  float[] error = new float[calcOut.length];
  for (int i = 0; i < error.length; i++) {
   error[i] = targetOutput[i] - calcOut[i]; // negative error
  }
  for (int i = layers.length - 1; i >= 0; i--) {
   error = layers[i].train(error, learningRate, momentum);
  }
 }

 public static void main(String[] args) throws Exception {
  float[][] train = new float[][]{new float[]{0, 0}, new float[]{0, 1}, new float[]{1, 0}, new float[]{1, 1}};
  float[][] res = new float[][]{new float[]{0}, new float[]{1}, new float[]{1}, new float[]{0}};
  MLP mlp = new MLP(2, new int[]{2, 1});
  mlp.getLayer(1).setIsSigmoid(false);
  Random r = new Random();
  int en = 500;
  for (int e = 0; e < en; e++) {

   for (int i = 0; i < res.length; i++) {
    int idx = r.nextInt(res.length);
    mlp.train(train[idx], res[idx], 0.3f, 0.6f);
   }

   if ((e + 1) % 100 == 0) {
    System.out.println();
    for (int i = 0; i < res.length; i++) {
     float[] t = train[i];
     System.out.printf("%d epoch\n", e + 1);
     System.out.printf("%.1f, %.1f --> %.3f\n", t[0], t[1], mlp.run(t)[0]);
    }
   }
  }
 }
}
于 2012-09-29T14:57:05.583 回答
5

我试着检查你的代码,但正如你所说,它很长。

这是我的建议:

  • 要验证您的网络是否正确学习,请尝试训练一个简单的网络,例如识别 XOR 运算符的网络。这不应该花那么长时间。
  • 使用最简单的反向传播算法。随机反向传播(在呈现每个训练输入后更新权重)是最简单的。最初在没有动量项的情况下实现算法,并使用恒定的学习率(即,不要从自适应学习率开始)。一旦您对算法的工作感到满意,您就可以引入动量项。同时做太多事情会增加不止一件事情出错的机会。这让你更难看出哪里出错了。
  • 如果你想复习一些代码,你可以查看我写的一些代码;你想看看Backpropagator.java。我基本上用动量项实现了随机反向传播算法。我还有一个视频,我在其中快速解释了我的反向传播算法的实现。

希望这会有所帮助!

于 2012-04-18T18:09:12.907 回答