58

我想对具有日期时间索引的数据框执行连接/合并/追加操作。

假设我有df1并且我想添加df2它。 df2可以有更少或更多的列,以及重叠的索引。对于索引匹配的所有行,如果与df2具有相同的列df1,我希望 的值df1被来自 的值覆盖df2

我怎样才能获得想要的结果?

4

2 回答 2

59

怎么样:df2.combine_first(df1)

In [33]: df2
Out[33]: 
                   A         B         C         D
2000-01-03  0.638998  1.277361  0.193649  0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05  0.435507 -0.025162 -1.112890  0.324111
2000-01-06 -0.210756 -1.027164  0.036664  0.884715
2000-01-07 -0.821631 -0.700394 -0.706505  1.193341
2000-01-10  1.015447 -0.909930  0.027548  0.258471
2000-01-11 -0.497239 -0.979071 -0.461560  0.447598

In [34]: df1
Out[34]: 
                   A         B         C
2000-01-03  2.288863  0.188175 -0.040928
2000-01-04  0.159107 -0.666861 -0.551628
2000-01-05 -0.356838 -0.231036 -1.211446
2000-01-06 -0.866475  1.113018 -0.001483
2000-01-07  0.303269  0.021034  0.471715
2000-01-10  1.149815  0.686696 -1.230991
2000-01-11 -1.296118 -0.172950 -0.603887
2000-01-12 -1.034574 -0.523238  0.626968
2000-01-13 -0.193280  1.857499 -0.046383
2000-01-14 -1.043492 -0.820525  0.868685

In [35]: df2.comb
df2.combine        df2.combineAdd     df2.combine_first  df2.combineMult    

In [35]: df2.combine_first(df1)
Out[35]: 
                   A         B         C         D
2000-01-03  0.638998  1.277361  0.193649  0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05  0.435507 -0.025162 -1.112890  0.324111
2000-01-06 -0.210756 -1.027164  0.036664  0.884715
2000-01-07 -0.821631 -0.700394 -0.706505  1.193341
2000-01-10  1.015447 -0.909930  0.027548  0.258471
2000-01-11 -0.497239 -0.979071 -0.461560  0.447598
2000-01-12 -1.034574 -0.523238  0.626968       NaN
2000-01-13 -0.193280  1.857499 -0.046383       NaN
2000-01-14 -1.043492 -0.820525  0.868685       NaN

请注意,它df1从不与 重叠的索引中获取值df2。如果这不完全符合您的要求,我愿意改进此功能/为其添加选项。

于 2012-03-20T21:02:32.567 回答
44

对于这样的合并,updateDataFrame 的方法很有用。

文档中获取示例:

import pandas as pd
import numpy as np

df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, 2.1, np.nan],
                   [np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
                   index=[1, 2])

之前的数据update

>>> df1
     0    1    2
0  NaN  3.0  5.0
1 -4.6  2.1  NaN
2  NaN  7.0  NaN
>>>
>>> df2
      0    1    2
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0

让我们使用来自以下的df1数据进行更新df2

df1.update(df2)

更新后数据:

>>> df1
      0    1    2
0   NaN  3.0  5.0
1 -42.6  2.1 -8.2
2  -5.0  1.6  4.0

评论:

  • 重要的是要注意这是一个“就地”操作,修改调用update.
  • 另请注意,非 NaN 值df1不会被 NaN 值覆盖df2
于 2017-03-29T03:32:43.067 回答