6

我正在尝试使用 Weka 在 JAVA 中构建文本分类器。我已经阅读了一些教程,并且正在尝试构建自己的分类器。

我有以下类别:

    computer,sport,unknown 

以及以下已经训练好的数据

 cs belongs to computer
 java -> computer
 soccer -> sport
 snowboard -> sport

因此,例如,如果用户想要对 java 一词进行分类,它应该返回类别计算机(毫无疑问,java 只存在于该类别中!)。

它确实可以编译,但会产生奇怪的输出。

输出是:

      ====== RESULT ======  CLASSIFIED AS:  [0.5769230769230769, 0.2884615384615385, 0.1346153846153846]
      ====== RESULT ======  CLASSIFIED AS:  [0.42857142857142855, 0.42857142857142855, 0.14285714285714285]

但是要分类的第一个文本是 java 并且它只出现在计算机类别中,因此它应该是

      [1.0 0.0 0.0] 

而另一个根本不应该被发现,所以它应该被归类为未知

      [0.0 0.0 1.0].

这是代码:

    import java.io.FileNotFoundException;
    import java.io.Serializable;
    import java.util.Arrays;

    import weka.classifiers.Classifier;
    import weka.classifiers.bayes.NaiveBayesMultinomialUpdateable;
    import weka.core.Attribute;
    import weka.core.FastVector;
    import weka.core.Instance;
    import weka.core.Instances;
    import weka.filters.Filter;
    import weka.filters.unsupervised.attribute.StringToWordVector;

    public class TextClassifier implements Serializable {

        private static final long serialVersionUID = -1397598966481635120L;
        public static void main(String[] args) {
            try {
                TextClassifier cl = new TextClassifier(new NaiveBayesMultinomialUpdateable());
                cl.addCategory("computer");
                cl.addCategory("sport");
                cl.addCategory("unknown");
                cl.setupAfterCategorysAdded();

                //
                cl.addData("cs", "computer");
                cl.addData("java", "computer");
                cl.addData("soccer", "sport");
                cl.addData("snowboard", "sport");

                double[] result = cl.classifyMessage("java");
                System.out.println("====== RESULT ====== \tCLASSIFIED AS:\t" + Arrays.toString(result));

                result = cl.classifyMessage("asdasdasd");
                System.out.println("====== RESULT ======\tCLASSIFIED AS:\t" + Arrays.toString(result));
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        private Instances trainingData;
        private StringToWordVector filter;
        private Classifier classifier;
        private boolean upToDate;
        private FastVector classValues;
        private FastVector attributes;
        private boolean setup;

        private Instances filteredData;

        public TextClassifier(Classifier classifier) throws FileNotFoundException {
            this(classifier, 10);
        }

        public TextClassifier(Classifier classifier, int startSize) throws FileNotFoundException {
            this.filter = new StringToWordVector();
            this.classifier = classifier;
            // Create vector of attributes.
            this.attributes = new FastVector(2);
            // Add attribute for holding texts.
            this.attributes.addElement(new Attribute("text", (FastVector) null));
            // Add class attribute.
            this.classValues = new FastVector(startSize);
            this.setup = false;

        }

        public void addCategory(String category) {
            category = category.toLowerCase();
            // if required, double the capacity.
            int capacity = classValues.capacity();
            if (classValues.size() > (capacity - 5)) {
                classValues.setCapacity(capacity * 2);
            }
            classValues.addElement(category);
        }

        public void addData(String message, String classValue) throws IllegalStateException {
            if (!setup) {
                throw new IllegalStateException("Must use setup first");
            }
            message = message.toLowerCase();
            classValue = classValue.toLowerCase();
            // Make message into instance.
            Instance instance = makeInstance(message, trainingData);
            // Set class value for instance.
            instance.setClassValue(classValue);
            // Add instance to training data.
            trainingData.add(instance);
            upToDate = false;
        }

        /**
         * Check whether classifier and filter are up to date. Build i necessary.
         * @throws Exception
         */
        private void buildIfNeeded() throws Exception {
            if (!upToDate) {
                // Initialize filter and tell it about the input format.
                filter.setInputFormat(trainingData);
                // Generate word counts from the training data.
                filteredData = Filter.useFilter(trainingData, filter);
                // Rebuild classifier.
                classifier.buildClassifier(filteredData);
                upToDate = true;
            }
        }

        public double[] classifyMessage(String message) throws Exception {
            message = message.toLowerCase();
            if (!setup) {
                throw new Exception("Must use setup first");
            }
            // Check whether classifier has been built.
            if (trainingData.numInstances() == 0) {
                throw new Exception("No classifier available.");
            }
            buildIfNeeded();
            Instances testset = trainingData.stringFreeStructure();
            Instance testInstance = makeInstance(message, testset);

            // Filter instance.
            filter.input(testInstance);
            Instance filteredInstance = filter.output();
            return classifier.distributionForInstance(filteredInstance);

        }

        private Instance makeInstance(String text, Instances data) {
            // Create instance of length two.
            Instance instance = new Instance(2);
            // Set value for message attribute
            Attribute messageAtt = data.attribute("text");
            instance.setValue(messageAtt, messageAtt.addStringValue(text));
            // Give instance access to attribute information from the dataset.
            instance.setDataset(data);
            return instance;
        }

        public void setupAfterCategorysAdded() {
            attributes.addElement(new Attribute("class", classValues));
            // Create dataset with initial capacity of 100, and set index of class.
            trainingData = new Instances("MessageClassificationProblem", attributes, 100);
            trainingData.setClassIndex(trainingData.numAttributes() - 1);
            setup = true;
        }

    }

顺便说一句,找到了一个很好的页面:

http://www.hakank.org/weka/TextClassifierApplet3.html

4

3 回答 3

4

贝叶斯分类器为您提供一个单词属于某个类别的(加权)概率。这几乎永远不会恰好是 0 或 1。您可以设置一个硬截止值(例如 0.5)并基于此决定一个类的成员资格,或者检查计算的概率并基于此决定(即最高映射到 1,最低为 0)。

于 2012-03-14T21:11:45.337 回答
1

我想我只是提出,您可以通过从http://lightsidelabs.com下载和使用 LightSIDE 来完成大多数此类文本分类工作而无需编码. 这个开源 Java 包包含 WEKA,可用于 Windows 和 Mac 上的发行版——可以非常灵活地处理大多数 WEKA 友好的数据集,允许您迭代各种模型、设置和参数,并为快照提供良好的支持和在任何时候保存您的数据和模型以及分类结果,直到您建立一个您满意的模型。该产品去年在 Kaggle.com 上的 ASAP 竞赛中证明了自己,并获得了很大的关注。当然,人们想要或需要“自己动手”总是有原因的,但也许即使作为检查,如果您正在编写 WEKA 解决方案,了解和使用 LightSIDE 可能会非常方便。

于 2013-04-13T21:27:44.227 回答
0

如果您尝试获得明确的课程而不是发行版,请尝试切换

return classifier.distributionForInstance(filteredInstance);

return classifier.classifyInstance(filteredInstance);

于 2013-01-27T06:53:18.467 回答