http://en.wikipedia.org/wiki/Perceptron#Example
我的问题是,当 NAND 只取 2 个参数并返回 1 时,为什么每个向量中有 3 个输入值:
http://en.wikipedia.org/wiki/Sheffer_stroke#Definition
为方便起见,粘贴代码:
th = 0.1
learning_rate = 0.1
weights = [0, 0, 0]
training_set = [((1, 0, 0), 1), ((1, 0, 1), 1), ((1, 1, 0), 1), ((1, 1, 1), 0)]
def sum_function(values):
return sum(value * weights[index] for index, value in enumerate(values))
while True:
print '-' * 60
error_count = 0
for input_vector, desired_output in training_set:
print weights
result = 1 if sum_function(input_vector) > th else 0
error = desired_output - result
if error != 0:
error_count += 1
for index, value in enumerate(input_vector):
weights[index] += learning_rate * error * value
if error_count == 0:
break