在许多库中以 0%-100% 的方式计算两个字符串之间的相似度的常用方法是测量您必须将较长的字符串更改为多少(以 % 为单位)才能将其变为较短的字符串:
/**
* Calculates the similarity (a number within 0 and 1) between two strings.
*/
public static double similarity(String s1, String s2) {
String longer = s1, shorter = s2;
if (s1.length() < s2.length()) { // longer should always have greater length
longer = s2; shorter = s1;
}
int longerLength = longer.length();
if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
return (longerLength - editDistance(longer, shorter)) / (double) longerLength;
}
// you can use StringUtils.getLevenshteinDistance() as the editDistance() function
// full copy-paste working code is below
计算editDistance()
:
上面的editDistance()
函数预计会计算两个字符串之间的编辑距离。此步骤有多种实现方式,每种实现方式都可能更适合特定场景。最常见的是Levenshtein 距离算法,我们将在下面的示例中使用它(对于非常大的字符串,其他算法可能会执行得更好)。
这是计算编辑距离的两个选项:
工作示例:
在此处查看在线演示。
public class StringSimilarity {
/**
* Calculates the similarity (a number within 0 and 1) between two strings.
*/
public static double similarity(String s1, String s2) {
String longer = s1, shorter = s2;
if (s1.length() < s2.length()) { // longer should always have greater length
longer = s2; shorter = s1;
}
int longerLength = longer.length();
if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
/* // If you have Apache Commons Text, you can use it to calculate the edit distance:
LevenshteinDistance levenshteinDistance = new LevenshteinDistance();
return (longerLength - levenshteinDistance.apply(longer, shorter)) / (double) longerLength; */
return (longerLength - editDistance(longer, shorter)) / (double) longerLength;
}
// Example implementation of the Levenshtein Edit Distance
// See http://rosettacode.org/wiki/Levenshtein_distance#Java
public static int editDistance(String s1, String s2) {
s1 = s1.toLowerCase();
s2 = s2.toLowerCase();
int[] costs = new int[s2.length() + 1];
for (int i = 0; i <= s1.length(); i++) {
int lastValue = i;
for (int j = 0; j <= s2.length(); j++) {
if (i == 0)
costs[j] = j;
else {
if (j > 0) {
int newValue = costs[j - 1];
if (s1.charAt(i - 1) != s2.charAt(j - 1))
newValue = Math.min(Math.min(newValue, lastValue),
costs[j]) + 1;
costs[j - 1] = lastValue;
lastValue = newValue;
}
}
}
if (i > 0)
costs[s2.length()] = lastValue;
}
return costs[s2.length()];
}
public static void printSimilarity(String s, String t) {
System.out.println(String.format(
"%.3f is the similarity between \"%s\" and \"%s\"", similarity(s, t), s, t));
}
public static void main(String[] args) {
printSimilarity("", "");
printSimilarity("1234567890", "1");
printSimilarity("1234567890", "123");
printSimilarity("1234567890", "1234567");
printSimilarity("1234567890", "1234567890");
printSimilarity("1234567890", "1234567980");
printSimilarity("47/2010", "472010");
printSimilarity("47/2010", "472011");
printSimilarity("47/2010", "AB.CDEF");
printSimilarity("47/2010", "4B.CDEFG");
printSimilarity("47/2010", "AB.CDEFG");
printSimilarity("The quick fox jumped", "The fox jumped");
printSimilarity("The quick fox jumped", "The fox");
printSimilarity("kitten", "sitting");
}
}
输出:
1.000 is the similarity between "" and ""
0.100 is the similarity between "1234567890" and "1"
0.300 is the similarity between "1234567890" and "123"
0.700 is the similarity between "1234567890" and "1234567"
1.000 is the similarity between "1234567890" and "1234567890"
0.800 is the similarity between "1234567890" and "1234567980"
0.857 is the similarity between "47/2010" and "472010"
0.714 is the similarity between "47/2010" and "472011"
0.000 is the similarity between "47/2010" and "AB.CDEF"
0.125 is the similarity between "47/2010" and "4B.CDEFG"
0.000 is the similarity between "47/2010" and "AB.CDEFG"
0.700 is the similarity between "The quick fox jumped" and "The fox jumped"
0.350 is the similarity between "The quick fox jumped" and "The fox"
0.571 is the similarity between "kitten" and "sitting"