是的,请参阅文档:http ://scikit-learn.org/stable/modules/classes.html#classification-metrics
您还应该查看该sklearn.metrics.classification_report
实用程序:
>>> from sklearn.metrics import classification_report
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> n_samples, n_features = digits.data.shape
>>> n_split = n_samples / 2
>>> clf = SGDClassifier().fit(digits.data[:n_split], digits.target[:n_split])
>>> predictions = clf.predict(digits.data[n_split:])
>>> expected = digits.target[n_split:]
>>> print classification_report(expected, predictions)
precision recall f1-score support
0 0.90 0.98 0.93 88
1 0.81 0.69 0.75 91
2 0.94 0.98 0.96 86
3 0.94 0.85 0.89 91
4 0.90 0.93 0.91 92
5 0.92 0.92 0.92 91
6 0.92 0.97 0.94 91
7 1.00 0.85 0.92 89
8 0.71 0.89 0.79 88
9 0.89 0.83 0.86 92
avg / total 0.89 0.89 0.89 899