下面是我的神经网络代码,有 3 个输入、1 个隐藏层和 1 个输出:
#Data
ds = SupervisedDataSet(3,1)
myfile = open('my_file.csv','r')
for data in tf.myfile ():
indata = tuple(data[:3])
outdata = tuple(data[3])
ds.addSample(indata,outdata)
net = FeedForwardNetwork()
inp = LinearLayer(3)
h1 = SigmoidLayer(1)
outp = LinearLayer(1)
# add modules
net.addOutputModule(outp)
net.addInputModule(inp)
net.addModule(h1)
# create connections
net.addConnection(FullConnection(inp, h1))
net.addConnection(FullConnection(h1, outp))
# finish up
net.sortModules()
# initialize the backprop trainer and train
trainer = BackpropTrainer(net, ds)
trainer.trainOnDataset(ds,1000) trainer.testOnData(verbose=True)
print 'Final weights:',net.params
我的问题是,如果你想使用这个训练有素的神经网络根据特定的输入进行预测,你是怎么做的?