(编辑:这里的问题之一是规模,即对一行有效的内容将在 200,000 * 50 数据帧上炸毁/崩溃 R。例如,必须按列而不是按行应用 strptime 以避免挂起。我正在寻找您实际在 200,000 * 50 上运行的工作代码解决方案,包括您测量的运行时间,而不仅仅是随意的“这很容易”评论。如果您选择错误的 fn,很容易获得运行时间 > 12 小时。接下来,我也要求你让我的零时间调整代码更快,工作直到完成才完成。到目前为止没有人尝试过。)
我想矢量化和加速以下多步对数时间转换,精度为毫秒,涉及转换strtime()
为单个数字,然后是减法,然后log()
是大型数据帧(200,000 行 * 300 列;其他(非时间)列省略)。代码如下。除了使其矢量化和快速之外,一个额外的问题是我不确定如何最好地在每个步骤中表示(高维)中间值,例如作为 strtime、矩阵、向量的列表)。我已经尝试过apply,sapply,lapply,vapply,ddply::maply(),...
了,但是中间格式的不兼容一直让我很困惑......
每行有 50 列time1..time50 (chr, format="HH:MM:SS.sss") 表示时间为毫秒分辨率的字符串。我需要毫秒精度。在每一行中,列time1..time50处于非递减顺序,我想将它们转换为time50之前的时间日志。转换 fnparse_hhmmsecms()
位于底部,需要认真矢量化和加速,您可以看到注释掉的替代版本。到目前为止我想到的是:strtime()
比(多个)substr()
调用更快,然后我以某种方式转换为三个 numeric 的列表(hh,mm,sec.ms)
,然后转换为向量假设下一步应该是向量乘以%*% c(3600,60,1)
转换为数字秒。这是我为每一行和每个时间字符串所做的伪代码;完整代码在底部:
for each row in dataframe { # vectorize this, loop_apply(), or whatever...
#for each time-column index i ('time1'..'time50') { # vectorize this...
hhmmsecms_50 <- parse_hhmmsecms(xx$time50[i])
# Main computation
xx[i,Clogtime] <- -10*log10(1000*(hhmmsecms_50 - parse_hhmmsecms(xx[i,Ctime]) ))
# Minor task: fix up all the 'zero-time' events to be evenly spaced between -3..0
#}
}
所以涉及到五个子问题:
- 如何矢量化处理返回的列表
strtime()
?因为它返回一个包含 3 个项目的列表,当传递一个 2D 数据帧或 1D 行时间字符串时,我们将得到一个 3D 或 2D 中间对象。(我们在内部使用列表列表吗?列表矩阵?列表数组?) - 如何向量化整个函数
parse_hhmmsecms()
? - 然后做减法并记录
- 向量化零时间修复代码(这是目前为止最慢的部分)
- 如何加速步骤 1...4.?
下面使用十个示例列的代码片段time41..50
(random_hhmmsecms()
如果您想要更大的示例,请使用)
我尽力遵循这些建议,这在六个小时的工作中可以重现:
# Each of 200,000 rows has 50 time strings (chr) like this...
xx <- structure(list(time41 = c("08:00:41.465", "08:00:50.573", "08:00:50.684"
), time42 = c("08:00:41.465", "08:00:50.573", "08:00:50.759"),
time43 = c("08:00:41.465", "08:00:50.573", "08:00:50.759"
), time44 = c("08:00:41.465", "08:00:50.664", "08:00:50.759"
), time45 = c("08:00:41.465", "08:00:50.684", "08:00:50.759"
), time46 = c("08:00:42.496", "08:00:50.684", "08:00:50.759"
), time47 = c("08:00:42.564", "08:00:50.759", "08:00:51.373"
), time48 = c("08:00:48.370", "08:00:50.759", "08:00:51.373"
), time49 = c("08:00:50.573", "08:00:50.759", "08:00:54.452"
), time50 = c("08:00:50.573", "08:00:50.759", "08:00:54.452"
)), .Names = c("time41", "time42", "time43", "time44", "time45",
"time46", "time47", "time48", "time49", "time50"), row.names = 3:5, class = "data.frame")
# Handle millisecond timing and time conversion
options('digits.secs'=3)
# Parse "HH:MM:SS.sss" timestring into (numeric) number of seconds (Very slow)
parse_hhmmsecms <- function(t) {
as.numeric(substr(t,1,2))*3600 + as.numeric(substr(t,4,5))*60 + as.numeric(substr(t,7,12)) # WORKS, V SLOW
#c(3600,60,1) %*% sapply((strsplit(t[1,]$time1, ':')), as.numeric) # SLOW, NOT VECTOR
#as.vector(as.numeric(unlist(strsplit(t,':',fixed=TRUE)))) %*% c(3600,60,1) # WANT TO VECTORIZE THIS
}
random_hhmmsecms <- function(n=1, min=8*3600, max=16*3600) {
# Generate n random hhmmsecms objects between min and max (8am:4pm)
xx <- runif(n,min,max)
ss <- xx %% 60
mm <- (xx %/% 60) %% 60
hh <- xx %/% 3600
sprintf("%02d:%02d:%05.3f", hh,mm,ss)
}
xx$logtime45 <- xx$logtime44 <- xx$logtime43 <- xx$logtime42 <- xx$logtime41 <- NA
xx$logtime50 <- xx$logtime49 <- xx$logtime48 <- xx$logtime47 <- xx$logtime46 <- NA
# (we pass index vectors as the dataframe column ordering may change)
Ctime <- which(colnames(xx)=='time41') : which(colnames(xx)=='time50')
Clogtime <- which(colnames(xx)=='logtime41') : which(colnames(xx)=='logtime50')
for (i in 40:nrow(xx)) {
#if (i%%100==0) { print(paste('... row',i)) }
hhmmsecms_50 <- parse_hhmmsecms(xx$time50[i])
xx[i,Clogtime] <- -10*log10(1000*(hhmmsecms_50 - parse_hhmmsecms(xx[i,Ctime]) ))
# Now fix up all the 'zero-time' events to be evenly spaced between -3..0
Czerotime.p <- which(xx[i,Clogtime]==Inf | xx[i,Clogtime]>-1e-9)
xx[i,Czerotime.p] <- seq(-3,0,length.out=length(Czerotime.p))
}