使用 CUDA+CUBLAS 编写了我的第一个程序。它只使用 'cublasDgemm' 函数并计算 2 N*N 矩阵的乘积。
但是,在我启动程序的所有时间里,它一直产生相同的错误答案(例如,当将包含 5 作为单个元素的 1*1 矩阵乘以包含元素 6 的 1*1 矩阵时,它总是说结果是 36,而不是30)。我检查了几次程序都没有成功。但是,当我在第二天(即重新启动后)回到它时,它工作得很好。我不记得我是否重新编译了它,但事实是它是同一个 VS 项目、相同的代码、具有 GPU 的同一台计算机。
那么,谁能解释我为什么会发生这种情况?我是否必须进一步期待同样的奇怪行为?
这是我启动的代码:
#include <iostream>
#include <string>
#include <iomanip>
#include <cuda_runtime.h>
#include <cublas_v2.h>
const int N = 5;
#define IDX2F(i,j) ((i) * N + j)
void fail(const cudaError_t& cudaStatus, const std::string& errorMessage) {
if (cudaStatus != cudaSuccess) {
std::cerr << errorMessage << std::endl;
exit(EXIT_FAILURE);
}
}
void fail(const cublasStatus_t& status, const std::string& errorMessage) {
if (status != CUBLAS_STATUS_SUCCESS) {
std::cerr << errorMessage << std::endl;
exit(EXIT_FAILURE);
}
}
void printMatrix(const double *C) {
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) {
std::cout << std::fixed << std::setprecision(2) << C[IDX2F(i,j)] << ' ';
}
std::cout << std::endl;
}
std::cout << std::endl;
}
int main(int argc, char **argv) {
cudaError_t cudaStatus;
cublasStatus_t status;
cublasHandle_t handle;
double *A = new double[N*N];
double *devPtrA;
double *B = new double[N*N];
double *devPtrB;
double *C = new double[N*N];
double *devPtrC;
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
A[IDX2F(i,j)] = i + j;
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
B[IDX2F(i,j)] = i + j * 0.5;
// do not have to set anything into matrix C, because beta = 0
// allocate mamory on GPU
cudaStatus = cudaMalloc((void**)&devPtrC, N*N*sizeof(*C));
fail(cudaStatus, "device memory allocation failed");
cudaStatus = cudaMalloc((void**)&devPtrA, N*N*sizeof(*A));
fail(cudaStatus, "device memory allocation failed");
cudaStatus = cudaMalloc((void**)&devPtrB, N*N*sizeof(*B));
fail(cudaStatus, "device memory allocation failed");
// create GPU handle
status = cublasCreate(&handle);
fail(status, "CUBLAS initialization failed");
// copying matrices from host to GPU
status = cublasSetMatrix(N, N, sizeof (*B), B, N, devPtrB, N);
fail(status, "failed to load data from host to GPU");
status = cublasSetMatrix(N, N, sizeof (*A), A, N, devPtrA, N);
fail(status, "failed to load data from host to GPU");
const double ONE = 1;
const double ZERO = 0;
printMatrix(A);
printMatrix(B);
status = cublasDgemm( handle,
CUBLAS_OP_N, CUBLAS_OP_N,
N, N, N,
&ONE,
devPtrA, N,
devPtrB, N,
&ZERO,
devPtrC, N);
fail(status, "error cublasDgemm");
status = cublasGetMatrix(N, N, sizeof (*C), devPtrC, N, C, N);
fail(status, "could not load result back from GPU to host");
printMatrix(C);
status = cublasDestroy(handle);
fail(status, "could not destroy CUBLAS handle");
cudaStatus = cudaFree(devPtrC);
fail(cudaStatus, "device memory freeing failed");
cudaStatus = cudaFree(devPtrB);
fail(cudaStatus, "device memory freeing failed");
cudaStatus = cudaFree(devPtrA);
fail(cudaStatus, "device memory freeing failed");
delete[] C;
delete[] B;
delete[] A;
return EXIT_SUCCESS;
}