也以经典的WordCount为例:
org.apache.hadoop.mapred.JobConf
是旧的,在新版本中我们使用Configuration
并Job
实现。
请使用org.apache.hadoop.mapreduce.lib.*
(它是新的 API)而不是org.apache.hadoop.mapred.TextInputFormat
(它是旧的)。
和并不是什么新东西Mapper
,Reducer
请看main
功能,它包含了比较全面的配置,可以根据您的具体要求随意更改。
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private Text outputKey;
private IntWritable outputVal;
@Override
public void setup(Context context) {
outputKey = new Text();
outputVal = new IntWritable(1);
}
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer stk = new StringTokenizer(value.toString());
while(stk.hasMoreTokens()) {
outputKey.set(stk.nextToken());
context.write(outputKey, outputVal);
}
}
}
class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result;
@Override
public void setup(Context context) {
result = new IntWritable();
}
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for(IntWritable val: values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
if(args.length != 2) {
System.err.println("Usage: <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Word Count");
// set jar
job.setJarByClass(WordCount.class);
// set Mapper, Combiner, Reducer
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
/* Optional, set customer defined Partioner:
* job.setPartitionerClass(MyPartioner.class);
*/
// set output key
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// set input and output path
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// by default, Hadoop use TextInputFormat and TextOutputFormat
// any customer defined input and output class must implement InputFormat/OutputFormat interface
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}