407

我需要一个基本函数来找到点和线段之间的最短距离。随意用您想要的任何语言编写解决方案;我可以把它翻译成我正在使用的(Javascript)。

编辑:我的线段由两个端点定义。所以我的线段AB是由两个点A (x1,y1)和定义的B (x2,y2)。我试图找到这条线段和一个点之间的距离C (x3,y3)。我的几何技能生疏了,所以我看到的例子令人困惑,我很抱歉承认。

4

54 回答 54

490

Eli,您确定的代码不正确。靠近线段所在的线但远离线段一端的点将在靠近线段时被错误地判断。 更新:提到的错误答案不再被接受。

这是一些正确的代码,用 C++ 编写。它假定一个类 2D-vector class vec2 {float x,y;},本质上,具有加法、减法、缩放等运算符,以及距离和点积函数(即x1 x2 + y1 y2)。

float minimum_distance(vec2 v, vec2 w, vec2 p) {
  // Return minimum distance between line segment vw and point p
  const float l2 = length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  if (l2 == 0.0) return distance(p, v);   // v == w case
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line. 
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  // We clamp t from [0,1] to handle points outside the segment vw.
  const float t = max(0, min(1, dot(p - v, w - v) / l2));
  const vec2 projection = v + t * (w - v);  // Projection falls on the segment
  return distance(p, projection);
}

编辑:我需要一个 Javascript 实现,所以在这里,没有依赖项(或注释,但它是上述的直接端口)。点表示为具有xy属性的对象。

function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
  var l2 = dist2(v, w);
  if (l2 == 0) return dist2(p, v);
  var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));
  return dist2(p, { x: v.x + t * (w.x - v.x),
                    y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }

编辑 2:我需要一个 Java 版本,但更重要的是,我需要 3d 而不是 2d。

float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
  float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
  if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
  float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
  t = constrain(t, 0, 1);
  return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}

这里,在函数参数中,<px,py,pz>是有问题的点,线段有端点<lx1,ly1,lz1><lx2,ly2,lz2>。该函数dist_sq(假定存在)找到两点之间距离的平方。

于 2009-10-01T03:18:20.550 回答
173

这是 Javascript 中最简单的完整代码。

x, y 是您的目标点,x1, y1 到 x2, y2 是您的线段。

更新:修复评论中的 0 长度行问题。

function pDistance(x, y, x1, y1, x2, y2) {

  var A = x - x1;
  var B = y - y1;
  var C = x2 - x1;
  var D = y2 - y1;

  var dot = A * C + B * D;
  var len_sq = C * C + D * D;
  var param = -1;
  if (len_sq != 0) //in case of 0 length line
      param = dot / len_sq;

  var xx, yy;

  if (param < 0) {
    xx = x1;
    yy = y1;
  }
  else if (param > 1) {
    xx = x2;
    yy = y2;
  }
  else {
    xx = x1 + param * C;
    yy = y1 + param * D;
  }

  var dx = x - xx;
  var dy = y - yy;
  return Math.sqrt(dx * dx + dy * dy);
}

帮助可视化解决方案的图像

于 2011-07-28T03:54:19.413 回答
75

这是为 FINITE LINE SEGMENTS 实现的,而不是像这里的大多数其他函数那样的无限线(这就是我做这个的原因)。

Paul Bourke 理论的实施

Python:

def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
    px = x2-x1
    py = y2-y1

    norm = px*px + py*py

    u =  ((x3 - x1) * px + (y3 - y1) * py) / float(norm)

    if u > 1:
        u = 1
    elif u < 0:
        u = 0

    x = x1 + u * px
    y = y1 + u * py

    dx = x - x3
    dy = y - y3

    # Note: If the actual distance does not matter,
    # if you only want to compare what this function
    # returns to other results of this function, you
    # can just return the squared distance instead
    # (i.e. remove the sqrt) to gain a little performance

    dist = (dx*dx + dy*dy)**.5

    return dist

AS3:

public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
    var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
    var something:Number = p2.x*p2.x + p2.y*p2.y;
    var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;

    if (u > 1)
        u = 1;
    else if (u < 0)
        u = 0;

    var x:Number = segA.x + u * p2.x;
    var y:Number = segA.y + u * p2.y;

    var dx:Number = x - p.x;
    var dy:Number = y - p.y;

    var dist:Number = Math.sqrt(dx*dx + dy*dy);

    return dist;
}

爪哇

private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
    {
        float px=x2-x1;
        float py=y2-y1;
        float temp=(px*px)+(py*py);
        float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
        if(u>1){
            u=1;
        }
        else if(u<0){
            u=0;
        }
        float x = x1 + u * px;
        float y = y1 + u * py;

        float dx = x - x3;
        float dy = y - y3;
        double dist = Math.sqrt(dx*dx + dy*dy);
        return dist;

    }
于 2010-02-10T00:20:10.263 回答
22

在我自己的问题线程中,如何在 C、C#/.NET 2.0 或 Java 的所有情况下计算点和线段之间的最短 2D 距离?当我找到一个 C# 答案时,我被要求在此处输入:所以在这里,从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我@SO 不回答而是提出问题,所以我希望我不会因为某些原因而获得百万反对票,而是构建评论家。我只是想(并被鼓励)分享其他人的想法,因为这个线程中的解决方案要么使用一些异国语言(Fortran,Mathematica),要么被某人标记为有缺陷。对我来说唯一有用的一个(由 Grumdrig 编写)是用 C++ 编写的,没有人将其标记为错误。但它缺少被调用的方法(点等)。

于 2010-12-15T08:20:49.013 回答
21

对于任何感兴趣的人,这里是 Joshua 的 Javascript 代码到 Objective-C 的简单转换:

- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    double dx = p.x - xx;
    double dy = p.y - yy;

    return sqrtf(dx * dx + dy * dy);
}

我需要这个解决方案,MKMapPoint所以我会分享它以防其他人需要它。只是一些小的变化,这将返回以米为单位的距离:

- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
于 2012-06-23T20:02:22.767 回答
21

在 F# 中,从点到和c之间的线段的距离由下式给出:ab

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

向量dab沿线段。的点积给出d/sc-a无限线和点之间最接近点的参数cminandmax函数用于将该参数限制在范围内,0..s使该点位于a和之间b。最后,长度是线段上到最近点a+p-c的距离。c

示例使用:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
于 2013-09-29T16:04:46.327 回答
21

在数学中

它使用线段的参数描述,并将点投影到线段定义的线中。当参数在线段中从 0 变为 1 时,如果投影超出此范围,我们将计算到相应端点的距离,而不是与线段垂直的直线。

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

绘图结果:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

替代文字

绘制那些比截止距离更近的点:

替代文字

等高线图:

在此处输入图像描述

于 2010-11-12T14:54:47.080 回答
11

嘿,我昨天刚写的。它在 Actionscript 3.0 中,基本上是 Javascript,尽管您可能没有相同的 Point 类。

//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.  
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
    var nearestPt:Point; //closest point on seqment to pt

    var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
    var bLenSq:Number = dot( b, b ); //Segment length squared

    if( keyDot <= 0 )  //pt is "behind" st, use st
    {
        nearestPt = st  
    }
    else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
    {
        nearestPt = st.add(b);
    }
    else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
    {
        var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
        var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
        nearestPt = st.add(partOfB);
    }

    var dist:Number = (pt.subtract(nearestPt)).length;

    return dist;
}

此外,这里有一个非常完整且可读的问题讨论:notejot.com

于 2009-05-13T04:56:24.500 回答
11

对于懒惰的人,这是我上面 @Grumdrig 解决方案的 Objective-C 端口:

CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
    CGFloat l2 = dist2(v, w);
    if (l2 == 0.0f) return dist2(p, v);

    CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0.0f) return dist2(p, v);
    if (t > 1.0f) return dist2(p, w);
    return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
    return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
于 2012-08-29T19:59:04.507 回答
10

无法抗拒用python对其进行编码:)

from math import sqrt, fabs
def pdis(a, b, c):
    t = b[0]-a[0], b[1]-a[1]           # Vector ab
    dd = sqrt(t[0]**2+t[1]**2)         # Length of ab
    t = t[0]/dd, t[1]/dd               # unit vector of ab
    n = -t[1], t[0]                    # normal unit vector to ab
    ac = c[0]-a[0], c[1]-a[1]          # vector ac
    return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)

print pdis((1,1), (2,2), (2,0))        # Example (answer is 1.414)


同上 fortran :)

real function pdis(a, b, c)
    real, dimension(0:1), intent(in) :: a, b, c
    real, dimension(0:1) :: t, n, ac
    real :: dd
    t = b - a                          ! Vector ab
    dd = sqrt(t(0)**2+t(1)**2)         ! Length of ab
    t = t/dd                           ! unit vector of ab
    n = (/-t(1), t(0)/)                ! normal unit vector to ab
    ac = c - a                         ! vector ac
    pdis = abs(ac(0)*n(0)+ac(1)*n(1))  ! Projection of ac to n (the minimum distance)
end function pdis


program test
    print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/))   ! Example (answer is 1.414)
end program test
于 2009-05-14T18:56:09.277 回答
10

使用反正切的一条线解决方案:

想法是将A移动到 (0, 0) 并顺时针旋转三角形以使C位于 X 轴上,当这种情况发生时,By将是距离。

  1. 角度 = Atan(Cy - Ay, Cx - Ax);
  2. b 角度 = Atan(By - Ay, Bx - Ax);
  3. AB 长度 = Sqrt( (Bx - Ax)^2 + (By - Ay)^2 )
  4. By = Sin ( bAngle - aAngle) * ABLength

C#

public double Distance(Point a, Point b, Point c)
{
    // normalize points
    Point cn = new Point(c.X - a.X, c.Y - a.Y);
    Point bn = new Point(b.X - a.X, b.Y - a.Y);

    double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
    double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);

    return Math.Sin(angle)*abLength;
}

一行C#(要转成SQL)

double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
于 2013-11-18T22:37:58.430 回答
10

这是 Grumdrig 解决方案的更完整说明。此版本还返回最近点本身。

#include "stdio.h"
#include "math.h"

class Vec2
{
public:
    float _x;
    float _y;

    Vec2()
    {
        _x = 0;
        _y = 0;
    }

    Vec2( const float x, const float y )
    {
        _x = x;
        _y = y;
    }

    Vec2 operator+( const Vec2 &v ) const
    {
        return Vec2( this->_x + v._x, this->_y + v._y );
    }

    Vec2 operator-( const Vec2 &v ) const
    {
        return Vec2( this->_x - v._x, this->_y - v._y );
    }

    Vec2 operator*( const float f ) const
    {
        return Vec2( this->_x * f, this->_y * f );
    }

    float DistanceToSquared( const Vec2 p ) const
    {
        const float dX = p._x - this->_x;
        const float dY = p._y - this->_y;

        return dX * dX + dY * dY;
    }

    float DistanceTo( const Vec2 p ) const
    {
        return sqrt( this->DistanceToSquared( p ) );
    }

    float DotProduct( const Vec2 p ) const
    {
        return this->_x * p._x + this->_y * p._y;
    }
};

// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
    const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
    if ( distSq == 0.0 )
    {
        // v == w case
        (*q) = v;

        return v.DistanceTo( p );
    }

    // consider the line extending the segment, parameterized as v + t (w - v)
    // we find projection of point p onto the line
    // it falls where t = [(p-v) . (w-v)] / |w-v|^2

    const float t = ( p - v ).DotProduct( w - v ) / distSq;
    if ( t < 0.0 )
    {
        // beyond the v end of the segment
        (*q) = v;

        return v.DistanceTo( p );
    }
    else if ( t > 1.0 )
    {
        // beyond the w end of the segment
        (*q) = w;

        return w.DistanceTo( p );
    }

    // projection falls on the segment
    const Vec2 projection = v + ( ( w - v ) * t );

    (*q) = projection;

    return p.DistanceTo( projection );
}

float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
    Vec2 q;

    float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );

    (*qX) = q._x;
    (*qY) = q._y;

    return distance;
}

void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
    float qX;
    float qY;
    float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
    printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
            segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}

void TestDistanceFromLineSegmentToPoint()
{
    TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
于 2012-06-08T22:10:46.980 回答
7

考虑对上述 Grumdrig 答案的修改。很多时候你会发现浮点不精确会导致问题。我在下面的版本中使用双打,但您可以轻松更改为浮点数。重要的部分是它使用 epsilon 来处理“slop”。此外,您会多次想知道交叉点发生在哪里,或者是否发生过。如果返回的 t < 0.0 或 > 1.0,则没有发生碰撞。然而,即使没有发生碰撞,很多时候你会想知道线段上离 P 最近的点在哪里,因此我使用 qx 和 qy 来返回这个位置。

double PointSegmentDistanceSquared( double px, double py,
                                    double p1x, double p1y,
                                    double p2x, double p2y,
                                    double& t,
                                    double& qx, double& qy)
{
    static const double kMinSegmentLenSquared = 0.00000001;  // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    static const double kEpsilon = 1.0E-14;  // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dx = p2x - p1x;
    double dy = p2y - p1y;
    double dp1x = px - p1x;
    double dp1y = py - p1y;
    const double segLenSquared = (dx * dx) + (dy * dy);
    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        qx = p1x;
        qy = p1y;
        t = 0.0;
        return ((dp1x * dp1x) + (dp1y * dp1y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (p1x, p1y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            qx = p1x;
            qy = p1y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (p2x, p2y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            qx = p2x;
            qy = p2y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            qx = p1x + (t * dx);
            qy = p1y + (t * dy);
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqx = px - qx;
        double dpqy = py - qy;
        return ((dpqx * dpqx) + (dpqy * dpqy));
    }
}
于 2012-07-11T00:30:56.243 回答
6

我假设你想找到最短的点与线段之间的距离;为此,您需要找到与穿过您的点的线段 (lineB) 垂直的线 (lineA),确定该线 (lineA) 与穿过线段的线 (lineB) 之间的交点; 如果该点在您的线段的两点之间,那么距离就是您的点与您刚刚找到的点之间的距离,即 lineA 和 lineB 的交点;如果该点不在线段的两点之间,则需要获取点与线段两端较近者之间的距离;这可以通过取点和线段的两个点之间的平方距离(避免平方根)来轻松完成;无论哪个更接近,取那个的平方根。

于 2009-05-11T17:57:41.230 回答
6

Grumdrig 的 C++/JavaScript 实现对我非常有用,因此我提供了一个我正在使用的 Python 直接端口。完整的代码在这里

class Point(object):
  def __init__(self, x, y):
    self.x = float(x)
    self.y = float(y)

def square(x):
  return x * x

def distance_squared(v, w):
  return square(v.x - w.x) + square(v.y - w.y)

def distance_point_segment_squared(p, v, w):
  # Segment length squared, |w-v|^2
  d2 = distance_squared(v, w) 
  if d2 == 0: 
    # v == w, return distance to v
    return distance_squared(p, v)
  # Consider the line extending the segment, parameterized as v + t (w - v).
  # We find projection of point p onto the line.
  # It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
  if t < 0:
    # Beyond v end of the segment
    return distance_squared(p, v)
  elif t > 1.0:
    # Beyond w end of the segment
    return distance_squared(p, w)
  else:
    # Projection falls on the segment.
    proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
    # print proj.x, proj.y
    return distance_squared(p, proj)
于 2014-08-11T00:38:40.003 回答
5

现在我的解决方案也是......(Javascript)

它非常快,因为我尽量避免使用任何 Math.pow 函数。

如您所见,在函数的末尾我有线的距离。

代码来自 lib http://www.draw2d.org/graphiti/jsdoc/#!/example

/**
 * Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
 * A simple hit test.
 * 
 * @return {boolean}
 * @static
 * @private
 * @param {Number} coronaWidth the accepted corona for the hit test
 * @param {Number} X1 x coordinate of the start point of the line
 * @param {Number} Y1 y coordinate of the start point of the line
 * @param {Number} X2 x coordinate of the end point of the line
 * @param {Number} Y2 y coordinate of the end point of the line
 * @param {Number} px x coordinate of the point to test
 * @param {Number} py y coordinate of the point to test
 **/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1,  X2,  Y2, px, py)
{
  // Adjust vectors relative to X1,Y1
  // X2,Y2 becomes relative vector from X1,Y1 to end of segment
  X2 -= X1;
  Y2 -= Y1;
  // px,py becomes relative vector from X1,Y1 to test point
  px -= X1;
  py -= Y1;
  var dotprod = px * X2 + py * Y2;
  var projlenSq;
  if (dotprod <= 0.0) {
      // px,py is on the side of X1,Y1 away from X2,Y2
      // distance to segment is length of px,py vector
      // "length of its (clipped) projection" is now 0.0
      projlenSq = 0.0;
  } else {
      // switch to backwards vectors relative to X2,Y2
      // X2,Y2 are already the negative of X1,Y1=>X2,Y2
      // to get px,py to be the negative of px,py=>X2,Y2
      // the dot product of two negated vectors is the same
      // as the dot product of the two normal vectors
      px = X2 - px;
      py = Y2 - py;
      dotprod = px * X2 + py * Y2;
      if (dotprod <= 0.0) {
          // px,py is on the side of X2,Y2 away from X1,Y1
          // distance to segment is length of (backwards) px,py vector
          // "length of its (clipped) projection" is now 0.0
          projlenSq = 0.0;
      } else {
          // px,py is between X1,Y1 and X2,Y2
          // dotprod is the length of the px,py vector
          // projected on the X2,Y2=>X1,Y1 vector times the
          // length of the X2,Y2=>X1,Y1 vector
          projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
      }
  }
    // Distance to line is now the length of the relative point
    // vector minus the length of its projection onto the line
    // (which is zero if the projection falls outside the range
    //  of the line segment).
    var lenSq = px * px + py * py - projlenSq;
    if (lenSq < 0) {
        lenSq = 0;
    }
    return Math.sqrt(lenSq)<coronaWidth;
};
于 2012-05-16T07:27:47.567 回答
5

这里使用的是 Swift

    /* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
    let A = p.x - l1.x
    let B = p.y - l1.y
    let C = l2.x - l1.x
    let D = l2.y - l1.y

    let dot = A * C + B * D
    let len_sq = C * C + D * D
    let param = dot / len_sq

    var xx, yy: CGFloat

    if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
        xx = l1.x
        yy = l1.y
    } else if param > 1 {
        xx = l2.x
        yy = l2.y
    } else {
        xx = l1.x + param * C
        yy = l1.y + param * D
    }

    let dx = p.x - xx
    let dy = p.y - yy

    return sqrt(dx * dx + dy * dy)
}
于 2015-01-02T03:33:07.533 回答
5

Matlab 代码,如果他们调用不带参数的函数,则带有内置的“自检”:

function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )

if( nargin < 3 )
    selfTest();
    r=0;
else
    vx = xy0(1)-xyP(1);
    vy = xy0(2)-xyP(2);
    ux = xy1(1)-xy0(1);
    uy = xy1(2)-xy0(2);
    lenSqr= (ux*ux+uy*uy);
    detP= -vx*ux + -vy*uy;

    if( detP < 0 )
        r = norm(xy0-xyP,2);
    elseif( detP > lenSqr )
        r = norm(xy1-xyP,2);
    else
        r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
    end
end


    function selfTest()
        %#ok<*NASGU>
        disp(['invalid args, distPointToLineSegment running (recursive)  self-test...']);

        ptA = [1;1]; ptB = [-1;-1];
        ptC = [1/2;1/2];  % on the line
        ptD = [-2;-1.5];  % too far from line segment
        ptE = [1/2;0];    % should be same as perpendicular distance to line
        ptF = [1.5;1.5];      % along the A-B but outside of the segment

        distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
        distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
        distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
        distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
        figure(1); clf;
        circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
            'Curvature', [1 1], 'EdgeColor', c);
        plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
        plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
        plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
        plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
        plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
        hold off;
        axis([-3 3 -3 3]); axis equal;
    end

end
于 2012-02-28T06:17:25.497 回答
5

C#

改编自@Grumdrig

public static double MinimumDistanceToLineSegment(this Point p,
    Line line)
{
    var v = line.StartPoint;
    var w = line.EndPoint;

    double lengthSquared = DistanceSquared(v, w);

    if (lengthSquared == 0.0)
        return Distance(p, v);

    double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
    var projection = v + t * (w - v);

    return Distance(p, projection);
}

public static double Distance(Point a, Point b)
{
    return Math.Sqrt(DistanceSquared(a, b));
}

public static double DistanceSquared(Point a, Point b)
{
    var d = a - b;
    return DotProduct(d, d);
}

public static double DotProduct(Point a, Point b)
{
    return (a.X * b.X) + (a.Y * b.Y);
}
于 2016-03-04T17:17:51.183 回答
4

看起来 StackOverflow 上的其他人几乎都提供了答案(到目前为止有 23 个答案),所以这是我对 C# 的贡献。这主要基于 M. Katz 的回答,而 M. Katz 又基于 Grumdrig 的回答。

   public struct MyVector
   {
      private readonly double _x, _y;


      // Constructor
      public MyVector(double x, double y)
      {
         _x = x;
         _y = y;
      }


      // Distance from this point to another point, squared
      private double DistanceSquared(MyVector otherPoint)
      {
         double dx = otherPoint._x - this._x;
         double dy = otherPoint._y - this._y;
         return dx * dx + dy * dy;
      }


      // Find the distance from this point to a line segment (which is not the same as from this 
      //  point to anywhere on an infinite line). Also returns the closest point.
      public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
                                          out MyVector closestPoint)
      {
         return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                          out closestPoint));
      }


      // Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want 
      //  to compare several distances to find the smallest or largest, but don't need the distance
      public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1, 
                                              MyVector lineSegmentPoint2, out MyVector closestPoint)
      {
         // Compute length of line segment (squared) and handle special case of coincident points
         double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
         if (segmentLengthSquared < 1E-7f)  // Arbitrary "close enough for government work" value
         {
            closestPoint = lineSegmentPoint1;
            return this.DistanceSquared(closestPoint);
         }

         // Use the magic formula to compute the "projection" of this point on the infinite line
         MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
         double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;

         // Handle the two cases where the projection is not on the line segment, and the case where 
         //  the projection is on the segment
         if (t <= 0)
            closestPoint = lineSegmentPoint1;
         else if (t >= 1)
            closestPoint = lineSegmentPoint2;
         else 
            closestPoint = lineSegmentPoint1 + (lineSegment * t);
         return this.DistanceSquared(closestPoint);
      }


      public double DotProduct(MyVector otherVector)
      {
         return this._x * otherVector._x + this._y * otherVector._y;
      }

      public static MyVector operator +(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
      }

      public static MyVector operator -(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
      }

      public static MyVector operator *(MyVector aVector, double aScalar)
      {
         return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
      }

      // Added using ReSharper due to CodeAnalysis nagging

      public bool Equals(MyVector other)
      {
         return _x.Equals(other._x) && _y.Equals(other._y);
      }

      public override bool Equals(object obj)
      {
         if (ReferenceEquals(null, obj)) return false;
         return obj is MyVector && Equals((MyVector) obj);
      }

      public override int GetHashCode()
      {
         unchecked
         {
            return (_x.GetHashCode()*397) ^ _y.GetHashCode();
         }
      }

      public static bool operator ==(MyVector left, MyVector right)
      {
         return left.Equals(right);
      }

      public static bool operator !=(MyVector left, MyVector right)
      {
         return !left.Equals(right);
      }
   }

这是一个小测试程序。

   public static class JustTesting
   {
      public static void Main()
      {
         Stopwatch stopwatch = new Stopwatch();
         stopwatch.Start();

         for (int i = 0; i < 10000000; i++)
         {
            TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
            TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
            TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
            TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
            TestIt(5, 1, 0, 0, 10, 0, 1.0);
            TestIt(1, 5, 0, 0, 0, 10, 1.0);
         }

         stopwatch.Stop();
         TimeSpan timeSpan = stopwatch.Elapsed;
      }


      private static void TestIt(float aPointX, float aPointY, 
                                 float lineSegmentPoint1X, float lineSegmentPoint1Y, 
                                 float lineSegmentPoint2X, float lineSegmentPoint2Y, 
                                 double expectedAnswer)
      {
         // Katz
         double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(d1 == expectedAnswer);

         /*
         // Katz using squared distance
         double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
          */

         /*
         // Matti (optimized)
         double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY), 
                                                new PointF(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                                new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
          */
      }

      private static double DistanceFromPointToLineSegment(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2, 
                                             out closestPoint);
      }

      private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                                                    out closestPoint);
      }
   }

如您所见,我尝试测量使用避免 Sqrt() 方法的版本和普通版本之间的差异。我的测试表明您可能可以节省大约 2.5%,但我什至不确定 - 各种测试运行中的变化具有相同的数量级。我还尝试测量了 Matti 发布的版本(加上明显的优化),该版本似乎比基于 Katz/Grumdrig 代码的版本慢了大约 4%。

编辑:顺便说一句,我还尝试测量一种方法,该方法使用叉积(和 Sqrt())找到到无限线(不是线段)的距离,它的速度大约提高了 32%。

于 2013-04-01T06:53:55.653 回答
4

用 t-sql 编码

点是 (@px, @py) 线段从 (@ax, @ay) 到 (@bx, @by)

create function fn_sqr (@NumberToSquare decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @Result decimal(18,10)
    set @Result = @NumberToSquare * @NumberToSquare
    return @Result
end
go

create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10),  @by decimal(18,10)) 
returns decimal(18,10)
as
begin
    declare @Result decimal(18,10)
    set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
    return @Result
end
go

create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @l2 decimal(18,10)
    set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
    if @l2 = 0
        return dbo.fn_Distance(@px, @py, @ax, @ay)
    declare @t decimal(18,10)
    set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
    if (@t < 0) 
        return dbo.fn_Distance(@px, @py, @ax, @ay);
    if (@t > 1) 
        return dbo.fn_Distance(@px, @py, @bx, @by);
    return dbo.fn_Distance(@px, @py,  @ax + @t * (@bx - @ax),  @ay + @t * (@by - @ay))
end
go

create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go

--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1) 
--result = 2.2360679775

--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1) 
--result = 2.4961508830

--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1) 
--result = 0.0000000000
于 2012-10-17T04:46:09.570 回答
3

这是 devnullicus 的 C++ 版本转换为 C#。对于我的实施,我需要知道交点并找到他的解决方案运作良好。

public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
    const double kMinSegmentLenSquared = 0.00000001; // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    const double kEpsilon = 1.0E-14; // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dX = lineEnd.X - lineStart.X;
    double dY = lineEnd.Y - lineStart.Y;
    double dp1X = point.X - lineStart.X;
    double dp1Y = point.Y - lineStart.Y;
    double segLenSquared = (dX * dX) + (dY * dY);
    double t = 0.0;

    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        intersectPoint = lineStart;
        t = 0.0;
        distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            intersectPoint = lineStart;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            intersectPoint = lineEnd;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqX = point.X - intersectPoint.X;
        double dpqY = point.Y - intersectPoint.Y;

        distance = ((dpqX * dpqX) + (dpqY * dpqY));
    }

    return true;
}
于 2014-03-24T19:20:57.320 回答
3

2D 和 3D 解决方案

考虑改变基,使得线段变为(0, 0, 0)-(d, 0, 0)(u, v, 0)。最短距离出现在该平面上,由下式给出

    u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u     -> d(B, C)

(到端点之一或到支撑线的距离,取决于对线的投影。等距离轨迹由两个半圆和两个线段组成。)

在此处输入图像描述

在上面的表达式中,d 是线段 AB 的长度,u、v 分别是 AB/d(AB 方向的单位向量)和 AC 的标量积和叉积(模量)。因此在矢量上,

AB.AC ≤ 0             -> |AC|
    0 ≤ AB.AC ≤ AB²   -> |ABxAC|/|AB|
          AB² ≤ AB.AC -> |BC|
于 2018-02-12T16:16:33.157 回答
2

接受的答案不起作用(例如,0,0 和 (-10,2,10,2) 之间的距离应该是 2)。

这是有效的代码:

   def dist2line2(x,y,line):
     x1,y1,x2,y2=line
     vx = x1 - x
     vy = y1 - y
     ux = x2-x1
     uy = y2-y1
     length = ux * ux + uy * uy
     det = (-vx * ux) + (-vy * uy) #//if this is < 0 or > length then its outside the line segment
     if det < 0:
       return (x1 - x)**2 + (y1 - y)**2
     if det > length:
       return (x2 - x)**2 + (y2 - y)**2
     det = ux * vy - uy * vx
     return det**2 / length
   def dist2line(x,y,line): return math.sqrt(dist2line2(x,y,line))
于 2013-06-25T17:15:21.103 回答
2

基于 Joshua 的 Javascript 的 AutoHotkeys 版本:

plDist(x, y, x1, y1, x2, y2) {
    A:= x - x1
    B:= y - y1
    C:= x2 - x1
    D:= y2 - y1

    dot:= A*C + B*D
    sqLen:= C*C + D*D
    param:= dot / sqLen

    if (param < 0 || ((x1 = x2) && (y1 = y2))) {
        xx:= x1
        yy:= y1
    } else if (param > 1) {
        xx:= x2
        yy:= y2
    } else {
        xx:= x1 + param*C
        yy:= y1 + param*D
    }

    dx:= x - xx
    dy:= y - yy

    return sqrt(dx*dx + dy*dy)
}
于 2012-09-06T03:35:30.827 回答
2

请参阅以下网站中的 Matlab GEOMETRY 工具箱:http: //people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html

ctrl+f 并键入“segment”以查找线段相关功能。函数“segment_point_dist_2d.m”和“segment_point_dist_3d.m”是您需要的。

GEOMETRY 代码有 C 版本和 C++ 版本以及 FORTRAN77 版本和 FORTRAN90 版本和 MATLAB 版本。

于 2012-04-18T08:25:23.470 回答
2

WPF版本:

public class LineSegment
{
    private readonly Vector _offset;
    private readonly Vector _vector;

    public LineSegment(Point start, Point end)
    {
        _offset = (Vector)start;
        _vector = (Vector)(end - _offset);
    }

    public double DistanceTo(Point pt)
    {
        var v = (Vector)pt - _offset;

        // first, find a projection point on the segment in parametric form (0..1)
        var p = (v * _vector) / _vector.LengthSquared;

        // and limit it so it lays inside the segment
        p = Math.Min(Math.Max(p, 0), 1);

        // now, find the distance from that point to our point
        return (_vector * p - v).Length;
    }
}
于 2015-09-27T23:55:35.017 回答
2

在这里没有看到 Java 实现,所以我将 Javascript 函数从接受的答案翻译为 Java 代码:

static double sqr(double x) {
    return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
    return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
    double l2 = dist2(v, w);
    if (l2 == 0) return dist2(p, v);
    double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0) return dist2(p, v);
    if (t > 1) return dist2(p, w);
    return dist2(p, new DoublePoint(
            v.x + t * (w.x - v.x),
            v.y + t * (w.y - v.y)
    ));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
    return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
    public double x;
    public double y;

    public DoublePoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}
于 2015-09-02T16:48:20.853 回答
2

我制作了一个交互式 Desmos 图来演示如何实现这一点:

https://www.desmos.com/calculator/kswrm8ddum

红点是A,绿点是B,C点是蓝。您可以拖动图表中的点来查看值的变化。在左边,值's'是线段的参数(即s = 0 表示A 点,s = 1 表示B 点)。值“d”是从第三点到通过 A 和 B 的线的距离。

编辑:

有趣的小见解:坐标(s,d)是坐标系中第三个点C的坐标,其中AB为单位x轴,单位y轴垂直于AB。

于 2016-11-08T15:53:15.023 回答
1

Here is same thing as the C++ answer but ported to pascal. The order of the point parameter has changed to suit my code but is the same thing.

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;
于 2012-05-17T16:56:22.950 回答
1
%Matlab solution by Tim from Cody
function ans=distP2S(x0,y0,x1,y1,x2,y2)
% Point is x0,y0
z=complex(x0-x1,y0-y1);
complex(x2-x1,y2-y1);
abs(z-ans*min(1,max(0,real(z/ans))));
于 2013-04-23T17:42:47.393 回答
1

这是我最终编写的代码。此代码假定点以 的形式定义{x:5, y:7}。请注意,这不是绝对最有效的方法,但它是我能想到的最简单、最容易理解的代码。

// a, b, and c in the code below are all points

function distance(a, b)
{
    var dx = a.x - b.x;
    var dy = a.y - b.y;
    return Math.sqrt(dx*dx + dy*dy);
}

function Segment(a, b)
{
    var ab = {
        x: b.x - a.x,
        y: b.y - a.y
    };
    var length = distance(a, b);

    function cross(c) {
        return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
    };

    this.distanceFrom = function(c) {
        return Math.min(distance(a,c),
                        distance(b,c),
                        Math.abs(cross(c) / length));
    };
}
于 2009-05-13T13:29:54.817 回答
1

该算法基于找到指定线与包含指定点的正交线的交点,并计算其距离。如果是线段,我们必须检查交点是否在线段的点之间,如果不是,则最小距离在指定点和线段的端点之一之间。这是一个 C# 实现。

Double Distance(Point a, Point b)
{
    double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
    return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}

Boolean IsBetween(double x, double a, double b)
{
    return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}

Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
    Double a, x, y, R;

    if (pt1.X != pt2.X) {
        a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
        x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
        y = a * x + pt1.Y - a * pt1.X; }
    else { x = pt1.X;  y = pt.Y; }

    if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
        intersection = new Point((int)x, (int)y);
        R = Distance(intersection, pt); }
    else {
        double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
        if (d1 < d2) { intersection = pt1; R = d1; }
        else { intersection = pt2; R = d2; }}

    return R;
}
于 2014-01-27T17:59:09.877 回答
1

上述功能不适用于垂直线。这是一个运行良好的功能!与点 p1、p2 连线。CheckPoint 是 p;

public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
  //          (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
  //d(P,L) = --------------------------------
  //         sqrt( (x2-x1)pow2 + (y2-y1)pow2 )

  double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
  double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
  double d = ch / del;
  return (float)d;
}
于 2011-08-31T04:41:32.167 回答
1

这是一个基于向量数学的;该解决方案也适用于更高的维度,并且还报告交点(在线段上)。

def dist(x1,y1,x2,y2,px,py):
    a = np.array([[x1,y1]]).T
    b = np.array([[x2,y2]]).T
    x = np.array([[px,py]]).T
    tp = (np.dot(x.T, b) - np.dot(a.T, b)) / np.dot(b.T, b)
    tp = tp[0][0]
    tmp = x - (a + tp*b)
    d = np.sqrt(np.dot(tmp.T,tmp)[0][0])
    return d, a+tp*b

x1,y1=2.,2.
x2,y2=5.,5.
px,py=4.,1.

d, inters = dist(x1,y1, x2,y2, px,py)
print (d)
print (inters)

结果是

2.1213203435596424
[[2.5]
 [2.5]]

数学在这里解释

https://brilliant.org/wiki/distance-between-point-and-line/

于 2019-02-18T09:58:43.273 回答
1

飞镖和颤振的解决方案:

import 'dart:math' as math;
 class Utils {
   static double shortestDistance(Point p1, Point p2, Point p3){
      double px = p2.x - p1.x;
      double py = p2.y - p1.y;
      double temp = (px*px) + (py*py);
      double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
      if(u>1){
        u=1;
      }
      else if(u<0){
        u=0;
      }
      double x = p1.x + u*px;
      double y = p1.y + u*py;
      double dx = x - p3.x;
      double dy = y - p3.y;
      double dist = math.sqrt(dx*dx+dy*dy);
      return dist;
   }
}

class Point {
  double x;
  double y;
  Point(this.x, this.y);
}
于 2019-09-08T20:46:53.357 回答
1

GLSL 版本:

// line (a -> b ) point p[enter image description here][1]
float distanceToLine(vec2 a, vec2 b, vec2 p) {
    float aside = dot((p - a),(b - a));
    if(aside< 0.0) return length(p-a);
    float bside = dot((p - b),(a - b));
    if(bside< 0.0) return length(p-b);
    vec2 pointOnLine = (bside*a + aside*b)/pow(length(a-b),2.0);
    return length(p - pointOnLine);
}
于 2017-11-21T23:54:56.057 回答
1

二维坐标数组的 Python Numpy 实现:

import numpy as np


def dist2d(p1, p2, coords):
    ''' Distance from points to a finite line btwn p1 -> p2 '''
    assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
    dp = p2 - p1
    st = dp[0]**2 + dp[1]**2
    u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st

    u[u > 1.] = 1.
    u[u < 0.] = 0.

    dx = (p1[0] + u * dp[0]) - coords[:, 0]
    dy = (p1[1] + u * dp[1]) - coords[:, 1]

    return np.sqrt(dx**2 + dy**2)


# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])

# List of coordinates
coords = np.array(
    [[0., 0.],
     [5., 5.],
     [10., 10.],
     [20., 20.]
     ])

d = dist2d(p1, p2, coords)

# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
于 2018-11-06T16:32:27.200 回答
0

A little cleaner solution in JavaScript based on this formula: enter image description here

distToSegment: function (point, linePointA, linePointB){

    var x0 = point.X;
    var y0 = point.Y;

    var x1 = linePointA.X;
    var y1 = linePointA.Y;

    var x2 = linePointB.X;
    var y2 = linePointB.Y;

    var Dx = (x2 - x1);
    var Dy = (y2 - y1);

    var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
    var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
    if (denominator == 0) {
        return this.dist2(point, linePointA);
    }

    return numerator/denominator;

}
于 2014-07-23T14:34:28.450 回答
0

Matlab直接Grumdrig实现

function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
  t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
  [idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
  ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1     
 end

function d=idist(a,b,c,d)
 d=abs(a-b+1i*(c-d));
end
于 2013-04-23T19:13:48.660 回答
0

刚刚遇到这个,并认为我会添加一个 Lua 实现。它假设点以表格 {x=xVal, y=yVal} 的形式给出,而线或线段由包含两个点的表格给出(参见下面的示例):

function distance( P1, P2 )
    return math.sqrt((P1.x-P2.x)^2 + (P1.y-P2.y)^2)
end

-- Returns false if the point lies beyond the reaches of the segment
function distPointToSegment( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    if t >= 0 and t <= 1 then   -- within line segment?
        return distance( projection, {x=P.x, y=P.y} )
    else
        return false
    end
end

-- Returns value even if point is further down the line (outside segment)
function distPointToLine( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    return distance( projection, {x=P.x, y=P.y} )
end

示例用法:

local P1 = {x = 0, y = 0}
local P2 = {x = 10, y = 10}
local line = { P1, P2 }
local P3 = {x = 7, y = 15}
print(distPointToLine( line, P3 ))  -- prints 5.6568542494924
print(distPointToSegment( line, P3 )) -- prints false
于 2013-09-09T11:29:10.633 回答
0

如果它是一条无限线,而不是线段,最简单的方法是(在 ruby​​ 中),其中 mx + b 是线, (x1, y1) 是已知点

(y1 - mx1 - b).abs / Math.sqrt(m**2 + 1)
于 2013-07-22T02:15:06.163 回答
0

想在 GLSL 中执行此操作,但如果可能,最好避免所有这些条件。使用 clamp() 可以避免两种端点情况:

// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
    vec3 AP = P - A, AB = B - A;
    float l = dot(AB, AB);
    if (l <= 0.0000001) return A;    // A and B are practically the same
    return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0);  // do the projection
}

如果您可以确定 A 和 B 永远不会彼此非常接近,则可以将其简化为删除 if()。事实上,即使 A 和 B相同,我的 GPU 仍然使用这个无条件版本给出正确的结果(但这是使用 OpenGL 4.1 之前的版本,其中 GLSL 除以零是未定义的):

// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
    vec3 AP = P - A, AB = B - A;
    return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}

计算距离很简单——GLSL 提供了一个 distance() 函数,你可以在这个最近点和 P 上使用它。

灵感来自Iñigo Quilez 的胶囊距离函数代码

于 2015-05-26T02:25:04.400 回答
0

Lua 解决方案

-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
    local dx,dy = x2-x1,y2-y1
    local length = math.sqrt(dx*dx+dy*dy)
    dx,dy = dx/length,dy/length -- normalization
    local p = dx*(px-x1)+dy*(py-y1)
    if p < 0 then
        dx,dy = px-x1,py-y1
        return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
    elseif p > length then
        dx,dy = px-x2,py-y2
        return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
    end
    return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end

对于折线(具有两个以上线段的线):

-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
    local x1, y1, x2, y2, min_dist
    local ax,ay = line[1], line[2]
    for j = 3, #line-1, 2 do
        local bx,by = line[j], line[j+1]
        local dist = distPointToLine(x,y,ax,ay,bx,by)
        if not min_dist or dist < min_dist then
            min_dist = dist
            x1, y1, x2, y2 = ax,ay,bx,by
        end
        ax, ay = bx, by
    end
    return x1, y1, x2, y2
end

例子:

-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})
于 2021-10-17T15:57:23.853 回答
0

用于 3D 线段和点的 Eigen C++ 版本

// Return minimum distance between line segment: head--->tail and point
double MinimumDistance(Eigen::Vector3d head, Eigen::Vector3d tail,Eigen::Vector3d point)
{
    double l2 = std::pow((head - tail).norm(),2);
    if(l2 ==0.0) return (head - point).norm();// head == tail case

    // Consider the line extending the segment, parameterized as head + t (tail - point).
    // We find projection of point onto the line.
    // It falls where t = [(point-head) . (tail-head)] / |tail-head|^2
    // We clamp t from [0,1] to handle points outside the segment head--->tail.

    double t = max(0,min(1,(point-head).dot(tail-head)/l2));
    Eigen::Vector3d projection = head + t*(tail-head);

    return (point - projection).norm();
}
于 2018-03-14T01:30:58.757 回答
0

Lua: 查找线段(不是整条线)和点之间的最小距离

function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
  local f1 = B1*C2 -B2*C1
  local f2 = A2*C1-A1*C2
  local f3 = A1*B2 -A2*B1
  return {x= f1/f3, y= f2/f3}
end


function pointLiesOnLine(x,y,x1,y1,x2,y2)
  local dx1 = x-x1
  local  dy1 = y-y1
  local dx2 = x-x2
  local  dy2 = y-y2
  local crossProduct = dy1*dx2 -dx1*dy2

if crossProduct ~= 0  then  return  false
else
  if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
    if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
      return true
    else return false end
  else  return false end
end
end


function dist(x1,y1,x2,y2)
  local dx = x1-x2
  local dy = y1-y2
  return math.sqrt(dx*dx + dy* dy)
 end


function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min  distance between (x3,y3) and line (x1,y2)--(x2,y2)
   local A2,B2,C2,A1,B1,C1
   local dx = y2-y1
   local dy = x2-x1
   if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1 
   elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
   else
      local m1 = dy/dx
      local m2 = -1/m1
      A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
   end
 local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
   return dist(intsecPoint.x, intsecPoint.y, x3,y3)
 else
   return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end
于 2016-07-11T21:07:41.680 回答
0

在使用几何的 javascript 中:

var a = { x:20, y:20};//start segment    
var b = { x:40, y:30};//end segment   
var c = { x:37, y:14};//point   

// magnitude from a to c    
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );    
// magnitude from b to c   
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );    
// magnitude from a to b (base)     
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );    
 // perimeter of triangle     
var p = ac + bc + ab;    
 // area of the triangle    
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );    
 // height of the triangle = distance    
var h = ( area * 2 ) / ab;    
console.log ("height: " + h);
于 2017-09-06T13:47:08.687 回答
0

在 R 中

     #distance beetween segment ab and point c in 2D space
getDistance_ort_2 <- function(a, b, c){
  #go to complex numbers
  A<-c(a[1]+1i*a[2],b[1]+1i*b[2])
  q=c[1]+1i*c[2]
  
  #function to get coefficients of line (ab)
  getAlphaBeta <- function(A)
  { a<-Re(A[2])-Re(A[1])
    b<-Im(A[2])-Im(A[1])
    ab<-as.numeric()
    ab[1] <- -Re(A[1])*b/a+Im(A[1])
    ab[2] <-b/a
    if(Im(A[1])==Im(A[2])) ab<- c(Im(A[1]),0)
    if(Re(A[1])==Re(A[2])) ab <- NA
    return(ab)
  }
  
  #function to get coefficients of line ortogonal to line (ab) which goes through point q
  getAlphaBeta_ort<-function(A,q)
  { ab <- getAlphaBeta(A) 
  coef<-c(Re(q)/ab[2]+Im(q),-1/ab[2])
  if(Re(A[1])==Re(A[2])) coef<-c(Im(q),0)
  return(coef)
  }
  
  #function to get coordinates of interception point 
  #between line (ab) and its ortogonal which goes through point q
  getIntersection_ort <- function(A, q){
    A.ab <- getAlphaBeta(A)
    q.ab <- getAlphaBeta_ort(A,q)
    if (!is.na(A.ab[1])&A.ab[2]==0) {
      x<-Re(q)
      y<-Im(A[1])}
    if (is.na(A.ab[1])) {
      x<-Re(A[1])
      y<-Im(q)
    } 
    if (!is.na(A.ab[1])&A.ab[2]!=0) {
      x <- (q.ab[1] - A.ab[1])/(A.ab[2] - q.ab[2])
      y <- q.ab[1] + q.ab[2]*x}
    xy <- x + 1i*y  
    return(xy)
  }
  
  intersect<-getIntersection_ort(A,q)
  if ((Mod(A[1]-intersect)+Mod(A[2]-intersect))>Mod(A[1]-A[2])) {dist<-min(Mod(A[1]-q),Mod(A[2]-q))
  } else dist<-Mod(q-intersect)
  return(dist)
}



 
于 2017-02-02T16:16:44.613 回答
0

http://paulbourke.net/geometry/pointlineplane/source.c的快速实现

    static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
        let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
        return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
    }

    /// http://paulbourke.net/geometry/pointlineplane/
    /// http://paulbourke.net/geometry/pointlineplane/source.c
    static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {

        let lineMag = magnitude(p1: lineEnd, p2: lineStart)
        let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
                ((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
                (lineMag * lineMag)

        if u < 0 || u > 1 {
            // closest point does not fall within the line segment
            return nil
        }

        let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
        let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)

        return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
    }
于 2020-04-26T11:06:31.823 回答
0

这是基于上面约书亚回答的函数的自包含 Delphi / Pascal 版本。将 TPoint 用于 VCL 屏幕图形,但应易于根据需要进行调整。

function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
   a, b, c, d: double;
   len_sq: double;
   param: double;
   xx, yy: double;
   dx, dy: double;
begin
   a := pt.x - pt1.x;
   b := pt.y - pt1.y;
   c := pt2.x - pt1.x;
   d := pt2.y - pt1.y;

   len_sq := (c * c) + (d * d);
   param := -1;

   if (len_sq <> 0) then
   begin
      param := ((a * c) + (b * d)) / len_sq;
   end;

   if param < 0 then
   begin
      xx := pt1.x;
      yy := pt1.y;
   end
   else if param > 1 then
   begin
      xx := pt2.x;
      yy := pt2.y;
   end
   else begin
      xx := pt1.x + param * c;
      yy := pt1.y + param * d;
   end;

   dx := pt.x - xx;
   dy := pt.y - yy;
   result := sqrt( (dx * dx) + (dy * dy))
end;
于 2018-03-18T07:15:30.880 回答
0

此答案相同,但在 Visual Basic 中除外。使其可用作 Microsoft Excel 和 VBA/宏中的用户定义函数。

该函数返回从点 (x,y) 到由 (x1,y1) 和 (x2,y2) 定义的线段的最近距离

Function DistanceToSegment(x As Double, y As Double, x1 As Double, y1 As Double, x2 As Double, y2 As Double)

  Dim A As Double
  A = x - x1
  Dim B As Double
  B = y - y1
  Dim C  As Double
  C = x2 - x1
  Dim D As Double
  D = y2 - y1

  Dim dot As Double
  dot = A * C + B * D
  Dim len_sq As Double
  len_sq = C * C + D * D
  Dim param As Double
  param = -1

  If (len_sq <> 0) Then
      param = dot / len_sq
  End If

  Dim xx As Double
  Dim yy As Double

  If (param < 0) Then
    xx = x1
    yy = y1
  ElseIf (param > 1) Then
    xx = x2
    yy = y2
  Else
    xx = x1 + param * C
    yy = y1 + param * D
  End If

  Dim dx As Double
  dx = x - xx
  Dim dy As Double
  dy = y - yy

  DistanceToSegment = Math.Sqr(dx * dx + dy * dy)

End Function
于 2016-01-05T19:33:47.107 回答
0

此答案基于接受的答案的 JavaScript 解决方案。它主要只是格式更好,函数名称更长,当然函数语法更短,因为它在 ES6 + CoffeeScript 中。

JavaScript 版本 (ES6)

distanceSquared = (v, w)=> Math.pow(v.x - w.x, 2) + Math.pow(v.y - w.y, 2);
distance = (v, w)=> Math.sqrt(distanceSquared(v, w));

distanceToLineSegmentSquared = (p, v, w)=> {
    l2 = distanceSquared(v, w);
    if (l2 === 0) {
        return distanceSquared(p, v);
    }
    t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    t = Math.max(0, Math.min(1, t));
    return distanceSquared(p, {
        x: v.x + t * (w.x - v.x),
        y: v.y + t * (w.y - v.y)
    });
}
distanceToLineSegment = (p, v, w)=> {
    return Math.sqrt(distanceToLineSegmentSquared(p, v));
}

CoffeeScript 版本

distanceSquared = (v, w)-> (v.x - w.x) ** 2 + (v.y - w.y) ** 2
distance = (v, w)-> Math.sqrt(distanceSquared(v, w))

distanceToLineSegmentSquared = (p, v, w)->
    l2 = distanceSquared(v, w)
    return distanceSquared(p, v) if l2 is 0
    t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2
    t = Math.max(0, Math.min(1, t))
    distanceSquared(p, {
        x: v.x + t * (w.x - v.x)
        y: v.y + t * (w.y - v.y)
    })

distanceToLineSegment = (p, v, w)->
    Math.sqrt(distanceToLineSegmentSquared(p, v, w))
于 2016-09-28T06:44:10.380 回答
-1

我需要一个 Godot (GDscript) 实现,所以我根据grumdrig接受的答案写了一个:

func minimum_distance(v: Vector2, w: Vector2, p: Vector2):
    # Return minimum distance between line segment vw and point p
    var l2: float = (v - w).length_squared()  # i.e. |w-v|^2 -  avoid a sqrt
    if l2 == 0.0:
        return p.distance_to(v) # v == w case

    # Consider the line extending the segment, parameterized as v + t (w - v).
    # We find projection of point p onto the line.
    # It falls where t = [(p-v) . (w-v)] / |w-v|^2
    # We clamp t from [0,1] to handle points outside the segment vw.
    var t: float = max(0, min(1, (p - v).dot(w - v) / l2))
    var projection: Vector2 = v + t * (w - v)  # Projection falls on the segment
    
    return p.distance_to(projection)
于 2021-04-17T19:16:37.553 回答
-1

这是 HSQLDB 的 SQL 实现:

CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
  RETURNS double
BEGIN atomic
   declare l2 double;
   declare t double;
   declare nx double;
   declare ny double;
   set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     set t = GREATEST(0, LEAST(1, t));
     set nx=vx + t * (wx - vx);
     set ny=vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;

Postgres 的实现:

CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
  RETURNS numeric
AS $$
   declare l2 numeric;
   declare t numeric;
   declare nx numeric;
   declare ny numeric;
BEGIN 
   l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     t := GREATEST(0, LEAST(1, t));
     nx := vx + t * (wx - vx);
     ny := vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;
$$ LANGUAGE plpgsql;
于 2020-09-02T13:19:52.503 回答