我正在使用 R 中的 glm 将 SAS PROC GENMOD 示例转换为 R。SAS 代码是:
proc genmod data=data0 namelen=30;
model boxcoxy=boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 + RACE3 + WEEKEND +
SEQ/dist=normal;
FREQ REPLICATE_VAR;
run;
我的 R 代码是:
parmsg2 <- glm(boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 + RACE3 + WEEKEND +
SEQ , data=data0, family=gaussian, weights = REPLICATE_VAR)
当我使用时,summary(parmsg2)
我得到与 SAS 相同的系数估计值,但我的标准误差大不相同。
SAS 的总结输出是:
Name df Estimate StdErr LowerWaldCL UpperWaldCL ChiSq ProbChiSq
Intercept 1 6.5007436 .00078884 6.4991975 6.5022897 67911982 0
agegrp4 1 .64607262 .00105425 .64400633 .64813891 375556.79 0
agegrp5 1 .4191395 .00089722 .41738099 .42089802 218233.76 0
agegrp6 1 -.22518765 .00083118 -.22681672 -.22355857 73401.113 0
agegrp7 1 -1.7445189 .00087569 -1.7462352 -1.7428026 3968762.2 0
agegrp8 1 -2.2908855 .00109766 -2.2930369 -2.2887342 4355849.4 0
race1 1 -.13454883 .00080672 -.13612997 -.13296769 27817.29 0
race3 1 -.20607036 .00070966 -.20746127 -.20467944 84319.131 0
weekend 1 .0327884 .00044731 .0319117 .03366511 5373.1931 0
seq2 1 -.47509583 .00047337 -.47602363 -.47416804 1007291.3 0
Scale 1 2.9328613 .00015586 2.9325559 2.9331668 -127
R的总结输出是:
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.50074 0.10354 62.785 < 2e-16
AGEGRP4 0.64607 0.13838 4.669 3.07e-06
AGEGRP5 0.41914 0.11776 3.559 0.000374
AGEGRP6 -0.22519 0.10910 -2.064 0.039031
AGEGRP7 -1.74452 0.11494 -15.178 < 2e-16
AGEGRP8 -2.29089 0.14407 -15.901 < 2e-16
RACE1 -0.13455 0.10589 -1.271 0.203865
RACE3 -0.20607 0.09315 -2.212 0.026967
WEEKEND 0.03279 0.05871 0.558 0.576535
SEQ -0.47510 0.06213 -7.646 2.25e-14
标准误差差异的重要性在于 SAS 系数都具有统计显着性,但R 输出中的RACE1
和系数不具有统计意义。WEEKEND
我找到了一个计算 R 中 Wald 置信区间的公式,但考虑到标准误差的差异,这是没有意义的,因为我不会得到相同的结果。
显然 SAS 使用岭稳定 Newton-Raphson 算法进行估计,即 ML。我读到的关于glm
R 中函数的信息是结果应该等同于 ML。我可以做些什么来改变我在 R 中的估计过程,以便获得在 SAS 中产生的等效系数和标准误差估计?
为了更新,感谢 Spacedman 的回答,我使用了权重,因为数据来自饮食调查中的个人,并且REPLICATE_VAR
是一个平衡的重复复制权重,它是一个整数(并且相当大,大约 1000 秒或 10000 秒)。描述重量的网站在这里。我不知道为什么在 SAS 中使用FREQ
而不是命令。WEIGHT
我现在将通过使用 REPLICATE_VAR 扩展观察数量并重新运行分析来进行测试。
感谢 Ben 在下面的回答,我现在使用的代码是:
parmsg2 <- coef(summary(glm(boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 + RACE3
+ WEEKEND + SEQ , data=data0, family=gaussian, weights = REPLICATE_VAR)))
#clean up the standard errors
parmsg2[,"Std. Error"] <- parmsg2[,"Std. Error"]/sqrt(mean(data0$REPLICATE_VAR))
parmsg2[,"t value"] <- parmsg2[,"Estimate"]/parmsg2[,"Std. Error"]
#note: using the t-distribution for p-values, correct the t-values
allsummary <- summary.glm(glm(boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 +
RACE3 + WEEKEND + SEQ , data=data0, family=gaussian, weights = REPLICATE_VAR))
parmsg2[,"Pr(>|t|)"] <- 2*pt(-abs(parmsg2[,"t value"]),df=allsummary$df.resid)