38

我的问题非常接近这个问题:如何在不使用任何内置高斯函数的情况下对图像进行高斯模糊处理?

这个问题的答案很好,但是并没有给出实际计算一个真正的高斯滤波器内核的例子。答案给出了一个任意内核,并展示了如何使用该内核应用过滤器,而不是如何计算真正的内核本身。我正在尝试从头开始在 C++ 或 Matlab 中实现高斯模糊,所以我需要知道如何从头开始计算内核。

如果有人可以使用任何小的示例图像矩阵计算出真正的高斯滤波器内核,我将不胜感激。

4

7 回答 7

36

您可以按照 MATLAB 文档中的说明从头开始创建高斯核fspecial。请阅读该页面算法部分中的高斯核创建公式,并按照以下代码进行操作。代码是创建一个 sigma = 1 的 m×n 矩阵。

m = 5; n = 5;
sigma = 1;
[h1, h2] = meshgrid(-(m-1)/2:(m-1)/2, -(n-1)/2:(n-1)/2);
hg = exp(- (h1.^2+h2.^2) / (2*sigma^2));
h = hg ./ sum(hg(:));

h =

    0.0030    0.0133    0.0219    0.0133    0.0030
    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0219    0.0983    0.1621    0.0983    0.0219
    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0030    0.0133    0.0219    0.0133    0.0030

请注意,这可以通过内置来完成,fspecial如下所示:

fspecial('gaussian', [m n], sigma)
ans =

    0.0030    0.0133    0.0219    0.0133    0.0030
    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0219    0.0983    0.1621    0.0983    0.0219
    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0030    0.0133    0.0219    0.0133    0.0030

我认为用你喜欢的任何语言来实现它都很简单。

编辑:让我也为给定的情况添加 和 的值h1,因为如果你用 C++ 编写代码,h2你可能不熟悉。meshgrid

h1 =

    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2

h2 =

    -2    -2    -2    -2    -2
    -1    -1    -1    -1    -1
     0     0     0     0     0
     1     1     1     1     1
     2     2     2     2     2
于 2011-11-20T21:29:04.033 回答
32

听起来很简单:

double sigma = 1;
int W = 5;
double kernel[W][W];
double mean = W/2;
double sum = 0.0; // For accumulating the kernel values
for (int x = 0; x < W; ++x) 
    for (int y = 0; y < W; ++y) {
        kernel[x][y] = exp( -0.5 * (pow((x-mean)/sigma, 2.0) + pow((y-mean)/sigma,2.0)) )
                         / (2 * M_PI * sigma * sigma);

        // Accumulate the kernel values
        sum += kernel[x][y];
    }

// Normalize the kernel
for (int x = 0; x < W; ++x) 
    for (int y = 0; y < W; ++y)
        kernel[x][y] /= sum;
于 2011-11-20T21:27:17.890 回答
23

要实现高斯模糊,您只需使用高斯函数并为内核中的每个元素计算一个值。

通常,您希望将最大权重分配给内核中的中心元素,并为内核边界处的元素分配接近零的值。这意味着内核应该有一个奇数高度(分别是宽度),以确保实际上有一个中心元素。

要计算实际的内核元素,您可以将高斯钟缩放到内核网格(选择任意 egsigma = 1和任意范围 eg -2*sigma ... 2*sigma)并将其归一化,元素总和为 1。为了实现这一点,如果您想支持任意内核大小,您可能需要使 sigma 适应所需的内核大小。

这是一个 C++ 示例:

#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>

double gaussian( double x, double mu, double sigma ) {
    const double a = ( x - mu ) / sigma;
    return std::exp( -0.5 * a * a );
}

typedef std::vector<double> kernel_row;
typedef std::vector<kernel_row> kernel_type;

kernel_type produce2dGaussianKernel (int kernelRadius) {
  double sigma = kernelRadius/2.;
  kernel_type kernel2d(2*kernelRadius+1, kernel_row(2*kernelRadius+1));
  double sum = 0;
  // compute values
  for (int row = 0; row < kernel2d.size(); row++)
    for (int col = 0; col < kernel2d[row].size(); col++) {
      double x = gaussian(row, kernelRadius, sigma)
               * gaussian(col, kernelRadius, sigma);
      kernel2d[row][col] = x;
      sum += x;
    }
  // normalize
  for (int row = 0; row < kernel2d.size(); row++)
    for (int col = 0; col < kernel2d[row].size(); col++)
      kernel2d[row][col] /= sum;
  return kernel2d;
}

int main() {
  kernel_type kernel2d = produce2dGaussianKernel(3);
  std::cout << std::setprecision(5) << std::fixed;
  for (int row = 0; row < kernel2d.size(); row++) {
    for (int col = 0; col < kernel2d[row].size(); col++)
      std::cout << kernel2d[row][col] << ' ';
    std::cout << '\n';
  }
}

输出是:

$ g++ test.cc && ./a.out
0.00134 0.00408 0.00794 0.00992 0.00794 0.00408 0.00134 
0.00408 0.01238 0.02412 0.03012 0.02412 0.01238 0.00408 
0.00794 0.02412 0.04698 0.05867 0.04698 0.02412 0.00794 
0.00992 0.03012 0.05867 0.07327 0.05867 0.03012 0.00992 
0.00794 0.02412 0.04698 0.05867 0.04698 0.02412 0.00794 
0.00408 0.01238 0.02412 0.03012 0.02412 0.01238 0.00408 
0.00134 0.00408 0.00794 0.00992 0.00794 0.00408 0.00134 

作为简化,您不需要使用 2d 内核。更容易实现且计算效率更高的是使用两个正交的一维内核。由于这种类型的线性卷积(线性可分离性)的关联性,这是可能的。您可能还想查看相应维基百科文章的这一部分


在 Python 中也是如此(希望有人会觉得它有用):

from math import exp

def gaussian(x, mu, sigma):
  return exp( -(((x-mu)/(sigma))**2)/2.0 )

#kernel_height, kernel_width = 7, 7
kernel_radius = 3 # for an 7x7 filter
sigma = kernel_radius/2. # for [-2*sigma, 2*sigma]

# compute the actual kernel elements
hkernel = [gaussian(x, kernel_radius, sigma) for x in range(2*kernel_radius+1)]
vkernel = [x for x in hkernel]
kernel2d = [[xh*xv for xh in hkernel] for xv in vkernel]

# normalize the kernel elements
kernelsum = sum([sum(row) for row in kernel2d])
kernel2d = [[x/kernelsum for x in row] for row in kernel2d]

for line in kernel2d:
  print ["%.3f" % x for x in line]

产生内核:

['0.001', '0.004', '0.008', '0.010', '0.008', '0.004', '0.001']
['0.004', '0.012', '0.024', '0.030', '0.024', '0.012', '0.004']
['0.008', '0.024', '0.047', '0.059', '0.047', '0.024', '0.008']
['0.010', '0.030', '0.059', '0.073', '0.059', '0.030', '0.010']
['0.008', '0.024', '0.047', '0.059', '0.047', '0.024', '0.008']
['0.004', '0.012', '0.024', '0.030', '0.024', '0.012', '0.004']
['0.001', '0.004', '0.008', '0.010', '0.008', '0.004', '0.001']
于 2011-11-20T21:29:26.653 回答
1

python中使用PIL图像库的高斯模糊。欲了解更多信息,请阅读:http ://blog.ivank.net/fastest-gaussian-blur.html

from PIL import Image
import math

# img = Image.open('input.jpg').convert('L')
# r = radiuss
def gauss_blur(img, r):
    imgData = list(img.getdata())

    bluredImg = Image.new(img.mode, img.size)
    bluredImgData = list(bluredImg.getdata())

    rs = int(math.ceil(r * 2.57))

    for i in range(0, img.height):
        for j in range(0, img.width):
            val = 0
            wsum = 0
            for iy in range(i - rs, i + rs + 1):
                for ix in range(j - rs, j + rs + 1):
                    x = min(img.width - 1, max(0, ix))
                    y = min(img.height - 1, max(0, iy))
                    dsq = (ix - j) * (ix - j) + (iy - i) * (iy - i)
                    weight = math.exp(-dsq / (2 * r * r)) / (math.pi * 2 * r * r)
                    val += imgData[y * img.width + x] * weight
                    wsum += weight 
            bluredImgData[i * img.width + j] = round(val / wsum)

    bluredImg.putdata(bluredImgData)
    return bluredImg
于 2015-12-13T11:24:23.233 回答
1
// my_test.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>
#include <string>

//https://stackoverflow.com/questions/8204645/implementing-gaussian-blur-how-to-calculate-convolution-matrix-kernel
//https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#getgaussiankernel
//http://dev.theomader.com/gaussian-kernel-calculator/

double gaussian(double x, double mu, double sigma) {
    const double a = (x - mu) / sigma;
    return std::exp(-0.5 * a * a);
}

typedef std::vector<double> kernel_row;
typedef std::vector<kernel_row> kernel_type;

kernel_type produce2dGaussianKernel(int kernelRadius, double sigma) {
    kernel_type kernel2d(2 * kernelRadius + 1, kernel_row(2 * kernelRadius + 1));
    double sum = 0;
    // compute values
    for (int row = 0; row < kernel2d.size(); row++)
        for (int col = 0; col < kernel2d[row].size(); col++) {
            double x = gaussian(row, kernelRadius, sigma)
                * gaussian(col, kernelRadius, sigma);
            kernel2d[row][col] = x;
            sum += x;
        }
    // normalize
    for (int row = 0; row < kernel2d.size(); row++)
        for (int col = 0; col < kernel2d[row].size(); col++)
            kernel2d[row][col] /= sum;
    return kernel2d;
}

char* gMatChar[10] = {
    "          ",
    "         ",
    "        ",
    "       ",
    "      ",
    "     ",
    "    ",
    "   ",
    "  ",
    " "
};

static int countSpace(float aValue)
{
    int count = 0;
    int value = (int)aValue;
    while (value > 9)
    {
        count++;
        value /= 10;
    }
    return count;
}

int main() {
    while (1)
    {
        char str1[80]; // window size
        char str2[80]; // sigma
        char str3[80]; // coefficient
        int space;

        int i, ch;
        printf("\n-----------------------------------------------------------------------------\n");
        printf("Start generate Gaussian matrix\n");
        printf("-----------------------------------------------------------------------------\n");
        // input window size
        printf("\nPlease enter window size (from 3 to 10) It should be odd (ksize/mod 2 = 1 ) and positive: Exit enter q \n");
        for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
            && (ch != '\n'); i++)
        {
            str1[i] = (char)ch;
        }

        // Terminate string with a null character
        str1[i] = '\0';
        if (str1[0] == 'q')
        {
            break;
        }
        int input1 = atoi(str1);
        int window_size = input1 / 2;
        printf("Input window_size was: %d\n", input1);

        // input sigma
        printf("Please enter sigma. Use default press Enter . Exit enter q \n");
        str2[0] = '0';
        for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
            && (ch != '\n'); i++)
        {
            str2[i] = (char)ch;
        }

        // Terminate string with a null character
        str2[i] = '\0';
        if (str2[0] == 'q')
        {
            break;
        }
        float input2 = atof(str2);
        float sigma;
        if (input2 == 0)
        {
            // Open-CV sigma � Gaussian standard deviation. If it is non-positive, it is computed from ksize as sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8 .
            sigma = 0.3*((input1 - 1)*0.5 - 1) + 0.8;
        }
        else
        {
            sigma = input2;
        }
        printf("Input sigma was: %f\n", sigma);

        // input Coefficient K
        printf("Please enter Coefficient K. Use default press Enter . Exit enter q \n");
        str3[0] = '0';
        for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
            && (ch != '\n'); i++)
        {
            str3[i] = (char)ch;
        }

        // Terminate string with a null character
        str3[i] = '\0';
        if (str3[0] == 'q')
        {
            break;
        }
        int input3 = atoi(str3);
        int cK;
        if (input3 == 0)
        {
            cK = 1;
        }
        else
        {
            cK = input3;
        }
        float sum_f = 0;
        float temp_f;
        int sum = 0;
        int temp;
        printf("Input Coefficient K was: %d\n", cK);

        printf("\nwindow size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK);

        kernel_type kernel2d = produce2dGaussianKernel(window_size, sigma);
        std::cout << std::setprecision(input1) << std::fixed;
        for (int row = 0; row < kernel2d.size(); row++) {
            for (int col = 0; col < kernel2d[row].size(); col++)
            {
                temp_f = cK* kernel2d[row][col];
                sum_f += temp_f;
                space = countSpace(temp_f);
                std::cout << gMatChar[space] << temp_f << ' ';
            }
            std::cout << '\n';
        }
        printf("\n Sum array = %f | delta = %f", sum_f, sum_f - cK);

        // rounding
        printf("\nRecommend use round(): window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK);
        sum = 0;
        std::cout << std::setprecision(0) << std::fixed;
        for (int row = 0; row < kernel2d.size(); row++) {
            for (int col = 0; col < kernel2d[row].size(); col++)
            {
                temp = round(cK* kernel2d[row][col]);
                sum += temp;
                space = countSpace((float)temp);
                std::cout << gMatChar[space] << temp << ' ';
            }
            std::cout << '\n';
        }
        printf("\n Sum array = %d | delta = %d", sum, sum - cK);

        // recommented
        sum_f = 0;
        int cK_d = 1 / kernel2d[0][0];
        cK_d = cK_d / 2 * 2;
        printf("\nRecommend: window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK_d);
        std::cout << std::setprecision(input1) << std::fixed;
        for (int row = 0; row < kernel2d.size(); row++) {
            for (int col = 0; col < kernel2d[row].size(); col++)
            {
                temp_f = cK_d* kernel2d[row][col];
                sum_f += temp_f;
                space = countSpace(temp_f);
                std::cout << gMatChar[space] << temp_f << ' ';
            }
            std::cout << '\n';
        }
        printf("\n Sum array = %f | delta = %f", sum_f, sum_f - cK_d);

        // rounding
        printf("\nRecommend use round(): window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK_d);
        sum = 0;
        std::cout << std::setprecision(0) << std::fixed;
        for (int row = 0; row < kernel2d.size(); row++) {
            for (int col = 0; col < kernel2d[row].size(); col++)
            {
                temp = round(cK_d* kernel2d[row][col]);
                sum += temp;
                space = countSpace((float)temp);
                std::cout << gMatChar[space] << temp << ' ';
            }
            std::cout << '\n';
        }
        printf("\n Sum array = %d | delta = %d", sum, sum - cK_d);

    }
}
于 2018-06-02T00:43:16.463 回答
1

好的,一个迟到的答案,但万一......

使用@moooeeeep 答案,但使用 numpy;

import numpy as np
radius = 3
sigma = radius/2.

k = np.arange(2*radius +1)
row = np.exp( -(((k - radius)/(sigma))**2)/2.)
col = row.transpose()
out = np.outer(row, col)
out = out/np.sum(out)
for line in out:
    print(["%.3f" % x for x in line])

就是少了一点线。

于 2019-03-22T01:05:37.510 回答
0
 function kernel = gauss_kernel(m, n, sigma)
 % Generating Gauss Kernel

 x = -(m-1)/2 : (m-1)/2;
 y = -(n-1)/2 : (n-1)/2;

 for i = 1:m
     for j = 1:n
         xx(i,j) = x(i);
         yy(i,j) = y(j);
     end
 end

 kernel = exp(-(xx.*xx + yy.*yy)/(2*sigma*sigma));

 % Normalize the kernel
 kernel  = kernel/sum(kernel(:));

 % Corresponding function in MATLAB
 % fspecial('gaussian', [m n], sigma)
于 2016-11-03T00:43:22.590 回答