例如:
int a = 12;
cout << typeof(a) << endl;
预期输出:
int
C++11 更新了一个非常古老的问题:在 C++ 中打印变量类型。
公认的(和好的)答案是使用typeid(a).name()
,其中a
是变量名。
现在在 C++11 中我们有了decltype(x)
,它可以将表达式转换为类型。并decltype()
带有自己的一套非常有趣的规则。例如decltype(a)
,并且decltype((a))
通常会是不同的类型(一旦这些原因暴露出来,出于良好和可理解的原因)。
我们的信任会typeid(a).name()
帮助我们探索这个勇敢的新世界吗?
不。
但是那个工具并没有那么复杂。这就是我用来回答这个问题的工具。我会将这个新工具与typeid(a).name()
. 而这个新工具实际上是建立在typeid(a).name()
.
根本问题:
typeid(a).name()
丢弃 cv 限定符、引用和左值/右值。例如:
const int ci = 0;
std::cout << typeid(ci).name() << '\n';
对我来说输出:
i
我在猜测 MSVC 输出:
int
即const
消失了。这不是 QOI(实施质量)问题。该标准规定了这种行为。
我在下面推荐的是:
template <typename T> std::string type_name();
这将像这样使用:
const int ci = 0;
std::cout << type_name<decltype(ci)>() << '\n';
对我来说输出:
int const
<disclaimer>
我没有在 MSVC 上测试过这个。</disclaimer>
但我欢迎那些这样做的人提供反馈。
C++11 解决方案
我正在使用ipapadop在他对 demangle 类型的回答中__cxa_demangle
推荐的非 MSVC 平台。但在 MSVC 上,我相信可以解开名称(未经测试)。这个核心围绕着一些简单的测试来检测、恢复和报告 cv-qualifiers 和对输入类型的引用。typeid
#include <type_traits>
#include <typeinfo>
#ifndef _MSC_VER
# include <cxxabi.h>
#endif
#include <memory>
#include <string>
#include <cstdlib>
template <class T>
std::string
type_name()
{
typedef typename std::remove_reference<T>::type TR;
std::unique_ptr<char, void(*)(void*)> own
(
#ifndef _MSC_VER
abi::__cxa_demangle(typeid(TR).name(), nullptr,
nullptr, nullptr),
#else
nullptr,
#endif
std::free
);
std::string r = own != nullptr ? own.get() : typeid(TR).name();
if (std::is_const<TR>::value)
r += " const";
if (std::is_volatile<TR>::value)
r += " volatile";
if (std::is_lvalue_reference<T>::value)
r += "&";
else if (std::is_rvalue_reference<T>::value)
r += "&&";
return r;
}
结果
有了这个解决方案,我可以做到这一点:
int& foo_lref();
int&& foo_rref();
int foo_value();
int
main()
{
int i = 0;
const int ci = 0;
std::cout << "decltype(i) is " << type_name<decltype(i)>() << '\n';
std::cout << "decltype((i)) is " << type_name<decltype((i))>() << '\n';
std::cout << "decltype(ci) is " << type_name<decltype(ci)>() << '\n';
std::cout << "decltype((ci)) is " << type_name<decltype((ci))>() << '\n';
std::cout << "decltype(static_cast<int&>(i)) is " << type_name<decltype(static_cast<int&>(i))>() << '\n';
std::cout << "decltype(static_cast<int&&>(i)) is " << type_name<decltype(static_cast<int&&>(i))>() << '\n';
std::cout << "decltype(static_cast<int>(i)) is " << type_name<decltype(static_cast<int>(i))>() << '\n';
std::cout << "decltype(foo_lref()) is " << type_name<decltype(foo_lref())>() << '\n';
std::cout << "decltype(foo_rref()) is " << type_name<decltype(foo_rref())>() << '\n';
std::cout << "decltype(foo_value()) is " << type_name<decltype(foo_value())>() << '\n';
}
输出是:
decltype(i) is int
decltype((i)) is int&
decltype(ci) is int const
decltype((ci)) is int const&
decltype(static_cast<int&>(i)) is int&
decltype(static_cast<int&&>(i)) is int&&
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int&
decltype(foo_rref()) is int&&
decltype(foo_value()) is int
decltype(i)
注意(例如)和之间的区别decltype((i))
。前者是声明的类型i
。后者是表达式 i
的“类型” 。(表达式从不具有引用类型,但作为约定,decltype
表示具有左值引用的左值表达式)。
decltype
因此,除了探索和调试您自己的代码之外,该工具还是一个很好的学习工具。
相反,如果我只是在 上构建它typeid(a).name()
,而不添加丢失的 cv-qualifiers 或引用,输出将是:
decltype(i) is int
decltype((i)) is int
decltype(ci) is int
decltype((ci)) is int
decltype(static_cast<int&>(i)) is int
decltype(static_cast<int&&>(i)) is int
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int
decltype(foo_rref()) is int
decltype(foo_value()) is int
即每个引用和 cv 限定符都被剥离。
C++14 更新
就在您认为自己已经找到了解决问题的方法时,总会有人突然冒出来,向您展示更好的方法。:-)
Jamboree的这个答案显示了如何在编译时获取 C++14 中的类型名称。这是一个绝妙的解决方案,原因如下:
Jamboree 的 回答并没有完全说明 VS 的所有内容,我正在稍微调整他的代码。但是由于这个答案得到了很多意见,所以花一些时间去那里并支持他的答案,没有它,这个更新永远不会发生。
#include <cstddef>
#include <stdexcept>
#include <cstring>
#include <ostream>
#ifndef _MSC_VER
# if __cplusplus < 201103
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# elif __cplusplus < 201402
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#else // _MSC_VER
# if _MSC_VER < 1900
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# elif _MSC_VER < 2000
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#endif // _MSC_VER
class static_string
{
const char* const p_;
const std::size_t sz_;
public:
typedef const char* const_iterator;
template <std::size_t N>
CONSTEXPR11_TN static_string(const char(&a)[N]) NOEXCEPT_TN
: p_(a)
, sz_(N-1)
{}
CONSTEXPR11_TN static_string(const char* p, std::size_t N) NOEXCEPT_TN
: p_(p)
, sz_(N)
{}
CONSTEXPR11_TN const char* data() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN std::size_t size() const NOEXCEPT_TN {return sz_;}
CONSTEXPR11_TN const_iterator begin() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN const_iterator end() const NOEXCEPT_TN {return p_ + sz_;}
CONSTEXPR11_TN char operator[](std::size_t n) const
{
return n < sz_ ? p_[n] : throw std::out_of_range("static_string");
}
};
inline
std::ostream&
operator<<(std::ostream& os, static_string const& s)
{
return os.write(s.data(), s.size());
}
template <class T>
CONSTEXPR14_TN
static_string
type_name()
{
#ifdef __clang__
static_string p = __PRETTY_FUNCTION__;
return static_string(p.data() + 31, p.size() - 31 - 1);
#elif defined(__GNUC__)
static_string p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return static_string(p.data() + 36, p.size() - 36 - 1);
# else
return static_string(p.data() + 46, p.size() - 46 - 1);
# endif
#elif defined(_MSC_VER)
static_string p = __FUNCSIG__;
return static_string(p.data() + 38, p.size() - 38 - 7);
#endif
}
constexpr
如果您仍然停留在古老的 C++11 中,此代码将自动退避。如果你用 C++98/03 在洞壁上作画,noexcept
也会被牺牲掉。
C++17 更新
在下面的评论中,Lyberta指出新的std::string_view
可以替换static_string
:
template <class T>
constexpr
std::string_view
type_name()
{
using namespace std;
#ifdef __clang__
string_view p = __PRETTY_FUNCTION__;
return string_view(p.data() + 34, p.size() - 34 - 1);
#elif defined(__GNUC__)
string_view p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return string_view(p.data() + 36, p.size() - 36 - 1);
# else
return string_view(p.data() + 49, p.find(';', 49) - 49);
# endif
#elif defined(_MSC_VER)
string_view p = __FUNCSIG__;
return string_view(p.data() + 84, p.size() - 84 - 7);
#endif
}
由于 Jive Dadson 在下面的评论中所做的非常出色的侦探工作,我已经更新了 VS 的常量。
请务必查看下面的重写,它消除了我最新公式中不可读的幻数。
尝试:
#include <typeinfo>
// …
std::cout << typeid(a).name() << '\n';
您可能必须在编译器选项中激活 RTTI 才能使其正常工作。此外,它的输出取决于编译器。它可能是原始类型名称或名称修饰符号或介于两者之间的任何内容。
非常难看,但如果您只想要编译时间信息(例如用于调试),则可以解决问题:
auto testVar = std::make_tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;
回报:
Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::tuple<int, double, const char*>'
根据Howard的解决方案,如果您不喜欢幻数,我认为这是一种很好的表示方式,并且看起来很直观:
#include <string_view>
template <typename T>
constexpr auto type_name() {
std::string_view name, prefix, suffix;
#ifdef __clang__
name = __PRETTY_FUNCTION__;
prefix = "auto type_name() [T = ";
suffix = "]";
#elif defined(__GNUC__)
name = __PRETTY_FUNCTION__;
prefix = "constexpr auto type_name() [with T = ";
suffix = "]";
#elif defined(_MSC_VER)
name = __FUNCSIG__;
prefix = "auto __cdecl type_name<";
suffix = ">(void)";
#endif
name.remove_prefix(prefix.size());
name.remove_suffix(suffix.size());
return name;
}
不要忘记包括<typeinfo>
我相信您指的是运行时类型识别。您可以通过执行上述操作来实现。
#include <iostream>
#include <typeinfo>
using namespace std;
int main() {
int i;
cout << typeid(i).name();
return 0;
}
请注意,由 C++ 的 RTTI 功能生成的名称不可移植。例如,类
MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>
将具有以下名称:
// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE
因此,您不能使用此信息进行序列化。但是,typeid(a).name() 属性仍然可以用于日志/调试目的
您可以使用模板。
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }
在上面的示例中,当类型不匹配时,它将打印“未知”。
如前所述,typeid().name()
可能会返回一个损坏的名称。在 GCC(和其他一些编译器)中,您可以使用以下代码解决它:
#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>
namespace some_namespace { namespace another_namespace {
class my_class { };
} }
int main() {
typedef some_namespace::another_namespace::my_class my_type;
// mangled
std::cout << typeid(my_type).name() << std::endl;
// unmangled
int status = 0;
char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);
switch (status) {
case -1: {
// could not allocate memory
std::cout << "Could not allocate memory" << std::endl;
return -1;
} break;
case -2: {
// invalid name under the C++ ABI mangling rules
std::cout << "Invalid name" << std::endl;
return -1;
} break;
case -3: {
// invalid argument
std::cout << "Invalid argument to demangle()" << std::endl;
return -1;
} break;
}
std::cout << demangled << std::endl;
free(demangled);
return 0;
}
Howard Hinnant使用幻数提取类型名称。康桓玮</a> 建议字符串前缀和后缀。但是前缀/后缀不断变化。使用“probe_type” type_name 自动计算“probe_type”的前缀和后缀大小以提取类型名称:
#include <string_view>
using namespace std;
namespace typeName {
template <typename T>
constexpr string_view wrapped_type_name () {
#ifdef __clang__
return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
return __FUNCSIG__;
#endif
}
class probe_type;
constexpr string_view probe_type_name ("typeName::probe_type");
constexpr string_view probe_type_name_elaborated ("class typeName::probe_type");
constexpr string_view probe_type_name_used (wrapped_type_name<probe_type> ().find (probe_type_name_elaborated) != -1 ? probe_type_name_elaborated : probe_type_name);
constexpr size_t prefix_size () {
return wrapped_type_name<probe_type> ().find (probe_type_name_used);
}
constexpr size_t suffix_size () {
return wrapped_type_name<probe_type> ().length () - prefix_size () - probe_type_name_used.length ();
}
template <typename T>
string_view type_name () {
constexpr auto type_name = wrapped_type_name<T> ();
return type_name.substr (prefix_size (), type_name.length () - prefix_size () - suffix_size ());
}
}
#include <iostream>
using typeName::type_name;
using typeName::probe_type;
class test;
int main () {
cout << type_name<class test> () << endl;
cout << type_name<const int*&> () << endl;
cout << type_name<unsigned int> () << endl;
const int ic = 42;
const int* pic = ⁣
const int*& rpic = pic;
cout << type_name<decltype(ic)> () << endl;
cout << type_name<decltype(pic)> () << endl;
cout << type_name<decltype(rpic)> () << endl;
cout << type_name<probe_type> () << endl;
}
输出
test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type
test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type
VS 2019 版本 16.7.6:
class test
const int*&
unsigned int
const int
const int*
const int*&
class typeName::probe_type
您可以为此使用特征类。就像是:
#include <iostream>
using namespace std;
template <typename T> class type_name {
public:
static const char *name;
};
#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)
DECLARE_TYPE_NAME(int);
int main()
{
int a = 12;
cout << GET_TYPE_NAME(a) << endl;
}
定义的DECLARE_TYPE_NAME
存在是为了让您更轻松地为您期望需要的所有类型声明此特征类。
这可能比涉及的解决方案更有用,typeid
因为您可以控制输出。例如,在我的编译器上使用typeid
for会给出“x”。long long
另一种对@康桓玮的回答的看法(最初),对前缀和后缀细节做更少的假设,并受到@Val的回答的启发——但不会污染全局命名空间;无条件;并希望更容易阅读。
流行的编译器提供了一个带有当前函数签名的宏。现在,函数是可模板化的;所以签名包含模板参数。因此,基本方法是:给定一个类型,在一个函数中,将该类型作为模板参数。
不幸的是,类型名称包含在描述函数的文本中,这在编译器之间是不同的。例如,对于 GCC,template <typename T> int foo()
with 类型的签名double
是:int foo() [T = double]
.
那么,如何摆脱包装文本呢?@HowardHinnant 的解决方案是最短和最“直接”的:只需使用每个编译器的幻数来删除前缀和后缀。但显然,这很脆弱;没有人喜欢他们代码中的幻数。然而,事实证明,给定具有已知名称的类型的宏值,您可以确定构成包装的前缀和后缀。
#include <string_view>
template <typename T> constexpr std::string_view type_name();
template <>
constexpr std::string_view type_name<void>()
{ return "void"; }
namespace detail {
using type_name_prober = void;
template <typename T>
constexpr std::string_view wrapped_type_name()
{
#ifdef __clang__
return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
return __FUNCSIG__;
#else
#error "Unsupported compiler"
#endif
}
constexpr std::size_t wrapped_type_name_prefix_length() {
return wrapped_type_name<type_name_prober>().find(type_name<type_name_prober>());
}
constexpr std::size_t wrapped_type_name_suffix_length() {
return wrapped_type_name<type_name_prober>().length()
- wrapped_type_name_prefix_length()
- type_name<type_name_prober>().length();
}
} // namespace detail
template <typename T>
constexpr std::string_view type_name() {
constexpr auto wrapped_name = detail::wrapped_type_name<T>();
constexpr auto prefix_length = detail::wrapped_type_name_prefix_length();
constexpr auto suffix_length = detail::wrapped_type_name_suffix_length();
constexpr auto type_name_length = wrapped_name.length() - prefix_length - suffix_length;
return wrapped_name.substr(prefix_length, type_name_length);
}
看到它GodBolt。这也应该适用于 MSVC。
在 C++11 中,我们有 decltype。标准 C++ 中无法显示使用 decltype 声明的变量的确切类型。我们可以使用 boost typeindex 即type_id_with_cvr
(cvr 代表 const、volatile、reference)来打印如下所示的类型。
#include <iostream>
#include <boost/type_index.hpp>
using namespace std;
using boost::typeindex::type_id_with_cvr;
int main() {
int i = 0;
const int ci = 0;
cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
return 0;
}
您也可以使用带有选项 -t (type) 的 c++filt 来解开类型名称:
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;
int main() {
auto x = 1;
string my_type = typeid(x).name();
system(("echo " + my_type + " | c++filt -t").c_str());
return 0;
}
仅在 linux 上测试。
涉及 RTTI (typeid) 的其他答案可能是您想要的,只要:
另一种方法(类似于 Greg Hewgill 的回答)是建立一个特性的编译时间表。
template <typename T> struct type_as_string;
// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
static const char* const value = "Wibble";
};
请注意,如果您将声明包装在宏中,则由于逗号的原因,您将难以为采用多个参数(例如 std::map)的模板类型声明名称。
要访问变量类型的名称,您只需要
template <typename T>
const char* get_type_as_string(const T&)
{
return type_as_string<T>::value;
}
我喜欢尼克的方法,一个完整的形式可能是这样的(对于所有基本数据类型):
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }
没有函数重载的更通用的解决方案比我以前的解决方案:
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
这里 MyClass 是用户定义的类。这里也可以添加更多条件。
例子:
#include <iostream>
class MyClass{};
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
int main(){;
int a=0;
std::string s="";
MyClass my;
std::cout<<TypeOf(a)<<std::endl;
std::cout<<TypeOf(s)<<std::endl;
std::cout<<TypeOf(my)<<std::endl;
return 0;}
输出:
int
String
MyClass
当我挑战时,我决定测试一个与平台无关的(希望是)模板诡计能走多远。
这些名称在编译时完全组装。(这意味着typeid(T).name()
无法使用,因此您必须明确提供非复合类型的名称。否则将显示占位符。)
示例用法:
TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.
TYPE_NAME(std::string)
int main()
{
// A simple case
std::cout << type_name<void(*)(int)> << '\n';
// -> `void (*)(int)`
// Ugly mess case
// Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
// -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`
// A case with undefined types
// If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
std::cout << type_name<std::ostream (*)(int, short)> << '\n';
// -> `class? (*)(int,??)`
// With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}
代码:
#include <type_traits>
#include <utility>
static constexpr std::size_t max_str_lit_len = 256;
template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
if constexpr(I < N)
return str[I];
else
return '\0';
}
constexpr std::size_t sl_len(const char *str)
{
for (std::size_t i = 0; i < max_str_lit_len; i++)
if (str[i] == '\0')
return i;
return 0;
}
template <char ...C> struct str_lit
{
static constexpr char value[] {C..., '\0'};
static constexpr int size = sl_len(value);
template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
template <typename ...P> using concat = typename concat_impl<P...>::type;
};
template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;
#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)
template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}
template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
static constexpr auto func()
{
if constexpr (N >= cexpr_pow<10,X>::value)
return num_to_str_lit_impl<N, X+1>::func();
else
return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
}
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());
using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;
using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;
template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;
template <typename T> struct primitive_type_name {using value = unk;};
template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};
template <typename T> struct type_name_impl;
template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
typename primitive_type_name<T>::value,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;
template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;
template <typename T> struct type_name_impl
{
using l = typename primitive_type_name<T>::value::template concat<spa>;
using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con>,
con::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<vol>,
vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con_vol>,
con_vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, ast>,
typename type_name_impl<T>::l::template concat< ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp>,
typename type_name_impl<T>::l::template concat< amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
typename type_name_impl<T>::l::template concat< amp, amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
typename type_name_impl<T>::l::template concat< type_name_lit<C>, nsp, ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<type_name_lit<P1>,
com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};
#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};
正如 Scott Meyers 在 Effective Modern C++ 中所解释的,
调用
std::type_info::name
不保证返回任何明智的。
最好的解决方案是让编译器在类型推导过程中产生错误信息,例如,
template<typename T>
class TD;
int main(){
const int theAnswer = 32;
auto x = theAnswer;
auto y = &theAnswer;
TD<decltype(x)> xType;
TD<decltype(y)> yType;
return 0;
}
结果将是这样的,具体取决于编译器,
test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;
test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;
因此,我们知道x
' 的类型是int
,y
' 的类型是const int*
#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())
int main() {
auto a = {"one", "two", "three"};
cout << "Type of a: " << typeid(a).name() << endl;
cout << "Real type of a:\n";
show_type_name(a);
for (auto s : a) {
if (string(s) == "one") {
cout << "Type of s: " << typeid(s).name() << endl;
cout << "Real type of s:\n";
show_type_name(s);
}
cout << s << endl;
}
int i = 5;
cout << "Type of i: " << typeid(i).name() << endl;
cout << "Real type of i:\n";
show_type_name(i);
return 0;
}
输出:
Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int
对于仍在访问的任何人,我最近遇到了同样的问题,并决定根据这篇文章的答案编写一个小型库。它提供 constexpr 类型名称和类型索引,并在 Mac、Windows 和 Ubuntu 上进行了测试。
从这个答案复制:https ://stackoverflow.com/a/56766138/11502722
我能够让它在某种程度上适用于 C++ static_assert()
。这里的皱纹是static_assert()
只接受字符串文字;constexpr string_view
不管用。您需要接受类型名周围的额外文本,但它有效:
template<typename T>
constexpr void assertIfTestFailed()
{
#ifdef __clang__
static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(__GNUC__)
static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(_MSC_VER)
static_assert(testFn<T>(), "Test failed on this used type: " __FUNCSIG__);
#else
static_assert(testFn<T>(), "Test failed on this used type (see surrounding logged error for details).");
#endif
}
}
MSVC 输出:
error C2338: Test failed on this used type: void __cdecl assertIfTestFailed<class BadType>(void)
... continued trace of where the erroring code came from ...
对于不同的东西,这里是类型的“到英语”转换,解构每个限定符、范围、参数等,递归地构建描述类型的字符串我认为“推导这个”提案将有助于减少许多专业化. 无论如何,这是一个有趣的晨练,不管过度膨胀。:)
struct X {
using T = int *((*)[10]);
T f(T, const unsigned long long * volatile * );
};
int main() {
std::cout << describe<decltype(&X::f)>() << std::endl;
}
输出:
pointer to member function of class 1X taking (pointer to array[10]
of pointer to int, pointer to volatile pointer to const unsigned
long long), and returning pointer to array[10] of pointer to int
这是代码: https ://godbolt.org/z/7jKK4or43
// Print types as strings, including functions, member
#include <type_traits>
#include <typeinfo>
#include <string>
#include <utility>
namespace detail {
template <typename T> struct Describe;
template <typename T, class ClassT>
struct Describe<T (ClassT::*)> {
static std::string describe();
};
template <typename RetT, typename... ArgsT>
struct Describe<RetT(ArgsT...)> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...)> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...)&> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const &> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile &> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) & noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile &> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const & noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile & noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile & noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) &&> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const &&> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile &&> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) && noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile &&> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const && noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) volatile && noexcept> {
static std::string describe();
};
template <typename RetT, class ClassT, typename... ArgsT>
struct Describe<RetT(ClassT::*)(ArgsT...) const volatile && noexcept> {
static std::string describe();
};
template <typename T>
std::string describe()
{
using namespace std::string_literals;
auto terminal = [&](char const * desc) {
return desc + " "s + typeid(T).name();
};
if constexpr(std::is_const_v<T>) {
return "const " + describe<std::remove_const_t<T>>();
}
else if constexpr(std::is_volatile_v<T>) {
return "volatile " + describe<std::remove_volatile_t<T>>();
}
else if constexpr (std::is_same_v<bool, T>) {
return "bool";
}
else if constexpr(std::is_same_v<char, T>) {
return "char";
}
else if constexpr(std::is_same_v<signed char, T>) {
return "signed char";
}
else if constexpr(std::is_same_v<unsigned char, T>) {
return "unsigned char";
}
else if constexpr(std::is_unsigned_v<T>) {
return "unsigned " + describe<std::make_signed_t<T>>();
}
else if constexpr(std::is_void_v<T>) {
return "void";
}
else if constexpr(std::is_integral_v<T>) {
if constexpr(std::is_same_v<short, T>)
return "short";
else if constexpr(std::is_same_v<int, T>)
return "int";
else if constexpr(std::is_same_v<long, T>)
return "long";
else if constexpr(std::is_same_v<long long, T>)
return "long long";
}
else if constexpr(std::is_same_v<float, T>) {
return "float";
}
else if constexpr(std::is_same_v<double, T>) {
return "double";
}
else if constexpr(std::is_same_v<long double, T>) {
return "long double";
}
else if constexpr(std::is_same_v<std::nullptr_t, T>) {
return "nullptr_t";
}
else if constexpr(std::is_class_v<T>) {
return terminal("class");
}
else if constexpr(std::is_union_v<T>) {
return terminal("union");
}
else if constexpr(std::is_enum_v<T>) {
std::string result;
if (!std::is_convertible_v<T, std::underlying_type_t<T>>) {
result += "scoped ";
}
return result + terminal("enum");
}
else if constexpr(std::is_pointer_v<T>) {
return "pointer to " + describe<std::remove_pointer_t<T>>();
}
else if constexpr(std::is_lvalue_reference_v<T>) {
return "lvalue-ref to " + describe<std::remove_reference_t<T>>();
}
else if constexpr(std::is_rvalue_reference_v<T>) {
return "rvalue-ref to " + describe<std::remove_reference_t<T>>();
}
else if constexpr(std::is_bounded_array_v<T>) {
return "array[" + std::to_string(std::extent_v<T>) + "] of " +
describe<std::remove_extent_t<T>>();
}
else if constexpr(std::is_unbounded_array_v<T>) {
return "array[] of " + describe<std::remove_extent_t<T>>();
}
else if constexpr(std::is_function_v<T>) {
return Describe<T>::describe();
}
else if constexpr(std::is_member_object_pointer_v<T>) {
return Describe<T>::describe();
}
else if constexpr(std::is_member_function_pointer_v<T>) {
return Describe<T>::describe();
}
}
template <typename RetT, typename... ArgsT>
std::string Describe<RetT(ArgsT...)>::describe() {
std::string result = "function taking (";
((result += detail::describe<ArgsT>(", ")), ...);
return result + "), returning " + detail::describe<RetT>();
}
template <typename T, class ClassT>
std::string Describe<T (ClassT::*)>::describe() {
return "pointer to member of " + detail::describe<ClassT>() +
" of type " + detail::describe<T>();
}
struct Comma {
char const * sep = "";
std::string operator()(std::string const& str) {
return std::exchange(sep, ", ") + str;
}
};
enum Qualifiers {NONE=0, CONST=1, VOLATILE=2, NOEXCEPT=4, LVREF=8, RVREF=16};
template <typename RetT, typename ClassT, typename... ArgsT>
std::string describeMemberPointer(Qualifiers q) {
std::string result = "pointer to ";
if (NONE != (q & CONST)) result += "const ";
if (NONE != (q & VOLATILE)) result += "volatile ";
if (NONE != (q & NOEXCEPT)) result += "noexcept ";
if (NONE != (q & LVREF)) result += "lvalue-ref ";
if (NONE != (q & RVREF)) result += "rvalue-ref ";
result += "member function of " + detail::describe<ClassT>() + " taking (";
Comma comma;
((result += comma(detail::describe<ArgsT>())), ...);
return result + "), and returning " + detail::describe<RetT>();
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...)>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(NONE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(CONST);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(VOLATILE | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(CONST | VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(CONST | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(CONST | VOLATILE | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) &>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const &>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | CONST);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) & noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile &>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile & noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | VOLATILE | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile &>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | CONST | VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const & noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | CONST | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile & noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(LVREF | CONST | VOLATILE | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...)&&>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const &&>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | CONST);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) && noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile &&>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) volatile && noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | VOLATILE | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile &&>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | CONST | VOLATILE);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const && noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | CONST | NOEXCEPT);
}
template <typename RetT, class ClassT, typename... ArgsT>
std::string Describe<RetT(ClassT::*)(ArgsT...) const volatile && noexcept>::describe() {
return describeMemberPointer<RetT, ClassT, ArgsT...>(RVREF | CONST | VOLATILE | NOEXCEPT);
}
} // detail
///////////////////////////////////
// Main function
///////////////////////////////////
template <typename T>
std::string describe() {
return detail::describe<T>();
}
///////////////////////////////////
// Sample code
///////////////////////////////////
#include <iostream>
struct X {
using T = int *((*)[10]);
T f(T, const unsigned long long * volatile * );
};
int main() {
std::cout << describe<decltype(&X::f)>() << std::endl;
}
基于之前的一些答案,我提出了这个不将结果存储__PRETTY_FUNCTION__
在二进制文件中的解决方案。它使用一个静态数组来保存类型名称的字符串表示。
它需要 C++23。
#include <iostream>
#include <string_view>
#include <array>
template <typename T>
constexpr auto type_name() {
auto gen = [] <class R> () constexpr -> std::string_view {
return __PRETTY_FUNCTION__;
};
constexpr std::string_view search_type = "float";
constexpr auto search_type_string = gen.template operator()<float>();
constexpr auto prefix = search_type_string.find(search_type);
constexpr auto suffix = search_type_string.size() - prefix - search_type.size();
constexpr auto str = gen.template operator()<T>();
constexpr int size = str.size() - prefix - suffix;
constexpr auto static arr = [&]<std::size_t... I>(std::index_sequence<I...>) constexpr {
return std::array<char, size>{str[prefix + I]...};
} (std::make_index_sequence<size>{});
return std::string_view(arr.data(), size);
}