给出上下文,在那里你得到了这些结果。举个例子,我在上下文短语“他们打破了愚蠢的废话”上使用 pos_tag 获得了其他结果:
import nltk
text=nltk.word_tokenize("They broke flimsy crap")
nltk.pos_tag(text)
[('他们','PRP'),('破碎','VBP'),('脆弱','JJ'),('废话','NN')]
无论如何,如果您发现在您看来很多单词被错误地归类为“NN”,您可以专门对那些标记为“NN”的单词应用一些其他技术。例如,您可以使用一些适当的标记语料库并使用三元标记器对其进行分类。(实际上与作者在http://nltk.googlecode.com/svn/trunk/doc/book/ch05.html上使用二元组的方式相同)。
像这样的东西:
pos_tag_results=nltk.pos_tag(your_text) #tagged sentences with pos_tag
trigram_tagger=nltk.TrigramTagger(tagged_corpora) #build trigram tagger based on your tagged_corpora
trigram_tag_results=trigram_tagger(your_text) #tagged sentences with trigram tagger
for i in range(0,len(pos_tag_results)):
if pos_tag_results[i][1]=='NN':
pos_tag_results[i][1]=trigram_tag_results[i][1]#for 'NN' take trigram_tagger instead
让我知道它是否可以改善您的结果。