11

我偶然发现了lubridate包中的一个特殊行为:dmy(NA)引发错误,而不是仅仅返回一个 NA。当我想转换一个包含一些元素为 NA 的列和一些通常可以毫无问题地转换的日期字符串时,这会给我带来问题。

这是最小的示例:

library(lubridate)
df <- data.frame(ID=letters[1:5],
              Datum=c("01.01.1990", NA, "11.01.1990", NA, "01.02.1990"))
df_copy <- df
#Question 1: Why does dmy(NA) not return NA, but throws an error?
df$Datum <- dmy(df$Datum)
Error in function (..., sep = " ", collapse = NULL)  : invalid separator
df <- df_copy
#Question 2: What's a work around?
#1. Idea: Only convert those elements that are not NAs
#RHS works, but assigning that to the LHS doesn't work (Most likely problem::
#column "Datum" is still of class factor, while the RHS is of class POSIXct)
df[!is.na(df$Datum), "Datum"] <- dmy(df[!is.na(df$Datum), "Datum"])
Using date format %d.%m.%Y.
Warning message:
In `[<-.factor`(`*tmp*`, iseq, value = c(NA_integer_, NA_integer_,  :
invalid factor level, NAs generated
df #Only NAs, apparently problem with class of column "Datum"
ID Datum
1  a  <NA>
2  b  <NA>
3  c  <NA>
4  d  <NA>
5  e  <NA>
df <- df_copy
#2. Idea: Use mapply and apply dmy only to those elements that are not NA
df[, "Datum"] <- mapply(function(x) {if (is.na(x)) {
                                 return(NA)
                               } else {
                                 return(dmy(x))
                               }}, df$Datum)
df #Meaningless numbers returned instead of date-objects
ID     Datum
1  a 631152000
2  b        NA
3  c 632016000
4  d        NA
5  e 633830400

总而言之,我有两个问题:1)为什么 dmy(NA) 不起作用?基于大多数其他函数,我认为每次转换(例如 dmy())再次NA返回NA(就像那样2 + NA)是一种很好的编程习惯?如果这种行为是有意的,我如何通过函数转换data.frame包含NAs的列dmy()

4

2 回答 2

6

Error in function (..., sep = " ", collapse = NULL) : invalid separator是由lubridate:::guess_format()功能引起的。NA正在被传递,就像在sep对 的调用中一样paste(),特别是在fmts <- unlist(mlply(with_seps, paste))。您可以尝试改进lubridate:::guess_format()以解决此问题。

否则,您可以NA将字符更改为 ( "NA") 吗?

require(lubridate)
df <- data.frame(ID=letters[1:5],
    Datum=c("01.01.1990", "NA", "11.01.1990", "NA", "01.02.1990")) #NAs are quoted
df_copy <- df

df$Datum <- dmy(df$Datum)
于 2011-10-31T16:37:52.920 回答
3

as.Date由于您的日期采用相当直接的格式,因此仅使用并指定适当的format参数可能要简单得多:

df$Date <- as.Date(df$Datum, format="%d.%m.%Y")
df

  ID      Datum       Date
1  a 01.01.1990 1990-01-01
2  b       <NA>       <NA>
3  c 11.01.1990 1990-01-11
4  d       <NA>       <NA>
5  e 01.02.1990 1990-02-01

要查看 使用的格式代码列表as.Date,请参阅?strptime

于 2011-10-31T16:06:15.400 回答