(赫比学习)
我的任务是在 Matlab 中编写 Oja 学习规则和 Sanger 学习规则,以训练神经网络。这个NN有6个输入和4个输出,我的训练集来自一个多元均匀分布,比如Xi~U(-ai,ai)和ai≠aj,对于所有i≠j
这些是最相关的文件(不包括大多数评论和 oja.m)
主文件
TS = generarVectoresUnif(6, [1, 4, 9, 36, 25, 16], 512);
TS = TS';
W = unifrnd(0,1,[4,6]);
% it not very fast. That's why I put 500 iterations
W_sanger = sanger(W,TS,500, 0.05)
通用向量Unif.m
function [ TS ] = generarVectoresUnif( dim, rangos, n )
dimensiones = int8(dim);
tamanio = int32(n);
TS = [];
for i = 1:dimensiones
TS = [TS, unifrnd(-rangos(i), rangos(i), [tamanio, 1]) ];
end
桑格.m
(注意: W是一个 4 x 6 大小的矩阵 。Wi是第i个输出 的权重向量。Wij = (Wi)j。在示例中,TS是一个 6 x 512 大小的矩阵)
function [ W ] = sanger( W_init, trainingset, iteraciones , eta)
W = W_init;
% obtiene los tamaños desde los parametros de entrada
size_input = size(W,2);
size_output = size(W,1);
n_patterns = size(trainingset, 2);
% one-tenth part
diezmo = iteraciones/10;
for it = 1:iteraciones
if 0 == mod(it, diezmo)
disp(horzcat('Iteracion numero ', num2str(it), ' de ',num2str(iteraciones)));
end
% for each pattern
for u = 1:n_patrones
DeltaW = zeros(size(W));
% Vi = sum{j=1...N} Wij * Xj
V = W * trainingset(:,u);
% sumatorias(i,j) is going to replace sum{k=1..i} Vk*Wkj
sumatorias = zeros(size_output,size_input);
for j = 1:size_input
for k = 1:size_output
% sumar de 1 hasta i, sin hacer otro ciclo
sumatorias(k,j) = (V' .* [ones(1,k), zeros(1,size_output-k)]) * W(:,j);
end
end
% calcula la variacion
for i = 1:size_output
for j=1:size_input
% Delta Wij = eta * Vi * ( xj - sum{k=1..i} Vk*Wkj )
DeltaW(i,j) = eta * V(i,1) * (trainingset(j,u) - sumatorias(i,j));
end
end
W = W + DeltaW;
%W = 1/norm(W) * W; %<---is it necessary? [Hertz] doesn't mention it
end
end
你能告诉我我做错了什么吗?矩阵的值增长得非常快。我对 oja.m 有同样的问题
我试过了:
- 将eta替换为1/it --->NaN
- 用迭代次数的指数函数替换eta ---> 好的,但这不是我所期望的
- 取消注释W = 1/norm(W) * W; . 这实际上有效,但它不应该是必要的,还是应该?