11

我正在尝试做一些与之前的问题非常相似的事情,但我得到了一个错误。我有一个包含特征的熊猫数据框,标签我需要进行一些转换以将特征和标签变量发送到机器学习对象中:

import pandas
import milk
from scikits.statsmodels.tools import categorical

然后我有:

trainedData=bigdata[bigdata['meta']<15]
untrained=bigdata[bigdata['meta']>=15]
#print trainedData
#extract two columns from trainedData
#convert to numpy array
features=trainedData.ix[:,['ratio','area']].as_matrix(['ratio','area'])
un_features=untrained.ix[:,['ratio','area']].as_matrix(['ratio','area'])
print 'features'
print features[:5]
##label is a string:single, touching,nuclei,dust
print 'labels'

labels=trainedData.ix[:,['type']].as_matrix(['type'])
print labels[:5]
#convert single to 0, touching to 1, nuclei to 2, dusts to 3
#
tmp=categorical(labels,drop=True)
targets=categorical(labels,drop=True).argmax(1)
print targets

输出控制台首先产生:

features
[[ 0.38846334  0.97681855]
[ 3.8318634   0.5724734 ]
[ 0.67710876  1.01816444]
[ 1.12024943  0.91508699]
[ 7.51749674  1.00156707]]
labels
[[single]
[touching]
[single]
[single]
[nuclei]]

然后我遇到以下错误:

Traceback (most recent call last):
File "/home/claire/Applications/ProjetPython/projet particule et objet/karyotyper/DAPI-Trainer02-MILK.py", line 83, in <module>
tmp=categorical(labels,drop=True)
File "/usr/local/lib/python2.6/dist-packages/scikits.statsmodels-0.3.0rc1-py2.6.egg/scikits/statsmodels/tools/tools.py", line 206, in categorical
tmp_dummy = (tmp_arr[:,None]==data).astype(float)
AttributeError: 'bool' object has no attribute 'astype'

是否可以将数据框中的类别变量“类型”转换为 int 类型?'type' 可以取值 'single'、'touching'、'nuclei'、'dusts',我需要用 0、1、2、3 等 int 值进行转换。

4

4 回答 4

18

以前的答案已经过时,所以这里有一个将字符串映射到数字的解决方案,适用于 Pandas 0.18.1 版本。

对于一个系列:

In [1]: import pandas as pd
In [2]: s = pd.Series(['single', 'touching', 'nuclei', 'dusts',
                       'touching', 'single', 'nuclei'])
In [3]: s_enc = pd.factorize(s)
In [4]: s_enc[0]
Out[4]: array([0, 1, 2, 3, 1, 0, 2])
In [5]: s_enc[1]
Out[5]: Index([u'single', u'touching', u'nuclei', u'dusts'], dtype='object')

对于数据框:

In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'labels': ['single', 'touching', 'nuclei', 
                       'dusts', 'touching', 'single', 'nuclei']})
In [3]: catenc = pd.factorize(df['labels'])
In [4]: catenc
Out[4]: (array([0, 1, 2, 3, 1, 0, 2]), 
        Index([u'single', u'touching', u'nuclei', u'dusts'],
        dtype='object'))
In [5]: df['labels_enc'] = catenc[0]
In [6]: df
Out[4]:
         labels  labels_enc
    0    single           0
    1  touching           1
    2    nuclei           2
    3     dusts           3
    4  touching           1
    5    single           0
    6    nuclei           2
于 2016-05-09T17:54:12.803 回答
11

如果你有一个字符串或其他对象的向量并且你想给它分类标签,你可以使用这个Factor类(在pandas命名空间中可用):

In [1]: s = Series(['single', 'touching', 'nuclei', 'dusts', 'touching', 'single', 'nuclei'])

In [2]: s
Out[2]: 
0    single
1    touching
2    nuclei
3    dusts
4    touching
5    single
6    nuclei
Name: None, Length: 7

In [4]: Factor(s)
Out[4]: 
Factor:
array([single, touching, nuclei, dusts, touching, single, nuclei], dtype=object)
Levels (4): [dusts nuclei single touching]

该因子具有属性labelslevels

In [7]: f = Factor(s)

In [8]: f.labels
Out[8]: array([2, 3, 1, 0, 3, 2, 1], dtype=int32)

In [9]: f.levels
Out[9]: Index([dusts, nuclei, single, touching], dtype=object)

这适用于一维向量,因此不确定它是否可以立即应用于您的问题,但请看一下。

顺便说一句,我建议您在 statsmodels 和/或 scikit-learn 邮件列表中提出这些问题,因为我们大多数人都不是 SO 用户。

于 2011-10-19T12:43:50.653 回答
6

我正在回答 Pandas 0.10.1 的问题。 Factor.from_array似乎可以解决问题。

>>> s = pandas.Series(['a', 'b', 'a', 'c', 'a', 'b', 'a'])
>>> s
0    a
1    b
2    a
3    c
4    a
5    b
6    a
>>> f = pandas.Factor.from_array(s)
>>> f
Categorical: 
array([a, b, a, c, a, b, a], dtype=object)
Levels (3): Index([a, b, c], dtype=object)
>>> f.labels
array([0, 1, 0, 2, 0, 1, 0])
>>> f.levels
Index([a, b, c], dtype=object)
于 2013-02-07T19:01:04.530 回答
0

因为这些都不适用于尺寸> 1,所以我制作了一些适用于任何 numpy 数组维度的代码:

def encode_categorical(array):
    d = {key: value for (key, value) in zip(np.unique(array), np.arange(len(u)))}
    shape = array.shape
    array = array.ravel()
    new_array = np.zeros(array.shape, dtype=np.int)
    for i in range(len(array)):
        new_array[i] = d[array[i]]
    return new_array.reshape(shape)
于 2018-03-22T14:34:51.033 回答