2

我不知道这是否可以实现,但鉴于这些功能\类:

float plus1(float x) { return x+1; }
float div2(float x) { return x/2.0f; }
template <typename T>
class chain {
public:
    chain(const T& val = T()) : val_(val) {}
    chain& operator<<( std::function<float (float)> func ) {
    val_ = func(val_);
    return *this;
  }
  operator T() const {
    return val_;
  }
  T val_;
};

我可以像这样链接在浮点数上运行的函数:

float x = chain<float>(3.0f) << div2 << plus1 << div2 << plus1;

但是,我想将其概括\扩展为能够在类型之间进行转换并具有带参数的函数。不幸的是,我不够聪明,无法弄清楚如何或是否可以做到这一点。太具体了,我希望能够做这样的事情(哪里operator<<只是一个随意的选择,最好我什至不必在开头写“链”);此外,这些只是虚拟示例,我不打算将其用于算术。

std::string str = chain<float>(3.0) << mul(2.0f) << sqrt << to_string << to_upper;

或者

vec3d v = chain<vec3i>(vec3i(1,1,1)) << normalize << to_vec3<double>;

有任何想法吗?

4

4 回答 4

2

我想我明白你为什么要这样做。它类似于 iostream 操纵器。

You will always need to start with chain(...) (i.e you will never be able to magically do something like int x = 1 << plus(2) << times(2)), but you can overload the operator int, operator float, ... to allow for the implicit conversions.

You will also need to go back and define each type (like mul) and then implement the operator<< which takes a mul or a const mul, but as a whole it's doable (but a PITA)

于 2011-09-24T15:30:15.623 回答
1

In order to get conversions between types you would want to have everything return a proxy object, that could convert to any type. Something based on boost::variant, perhaps.

You could also rewrite your operator << as a template function to make it a bit more generic:

template <class UnaryFunction>
chain& operator<<(UnaryFunction func) { _val = func(_val); return *this;}

That would allow you to use any kind of function object as an argument.

To use functions with multiple arguments, you can use the bind function. This was in boost prior to C++11, however now it is in the standard and should be available on any C++11 compatible compiler.

于 2011-09-24T15:30:47.813 回答
1

A general and extendable solution using boost::proto :

#include <iostream>
#include <boost/proto/proto.hpp>

namespace bp = boost::proto;

// -----------------------------------------------------------------------------
// perform is a callable transform that take a function_ terminal and execute it
// -----------------------------------------------------------------------------
struct perform : bp::callable
{
  template<class Sig> struct result;
  template<class This, class Func, class In>
  struct result<This(Func,In)> 
       : boost::result_of<typename boost::remove_reference<Func>::type(In)> {};

  template<class Func, class In>
  typename result<perform(Func &,In)>::type
  operator()( Func& f, In& in ) const
  {
    return f(in);
  }
};

// -----------------------------------------------------------------------------
// Grammar for chaining pipe of functions
// -----------------------------------------------------------------------------
struct pipeline_grammar
: bp::or_<
    bp::when<
        bp::bitwise_or<pipeline_grammar,pipeline_grammar>
          , pipeline_grammar(
                bp::_right
              , pipeline_grammar(bp::_left,bp::_state)
                )
        >
      , bp::when<
            bp::terminal<bp::_>
          , perform(bp::_value, bp::_state) 
    >
> {};

// -----------------------------------------------------------------------------
// Forward declaration of the pipeline domain
// -----------------------------------------------------------------------------
struct pipeline_domain;

// -----------------------------------------------------------------------------
// A pipeline is the top level DS entity
// -----------------------------------------------------------------------------
template<class Expr>
struct  pipeline : bp::extends<Expr,pipeline<Expr>, pipeline_domain>
{
  typedef bp::extends<Expr, pipeline<Expr>, pipeline_domain> base_type;
  pipeline(Expr const &expr = Expr()) : base_type(expr) {}

  // ---------------------------------------------------------------------------
  // A pipeline is an unary callable object
  // ---------------------------------------------------------------------------
  template<class Input>
  typename boost::result_of<pipeline_grammar(pipeline,Input)>::type
  operator()(Input const& in) const
  {
    pipeline_grammar evaluator;
    return evaluator(*this,in);
  }
};

// -----------------------------------------------------------------------------
// the pipeline_domain make pipeline expression macthes pipeline_grammar
// -----------------------------------------------------------------------------
struct pipeline_domain 
     : bp::domain<bp::generator<pipeline>,pipeline_grammar>
{};

// -----------------------------------------------------------------------------
// Takes a PFO instance and make it a pipeline terminal
// -----------------------------------------------------------------------------
template<class Func>
typename bp::result_of::
make_expr<bp::tag::terminal, pipeline_domain,Func>::type
task( Func const& f )
{
  return bp::make_expr<bp::tag::terminal,pipeline_domain>( f );
}

//--------------------------- Examples --------------------

struct return_value
{  
  template<class Sig> struct result;
  template<class This, class T>
  struct result<This(T)> : bp::detail::uncvref<T>
  {};

  return_value(int i = 1) : factor(i) {}

  template<class T> 
  T operator()(T const& in) const
  {
    return in*factor;
  }

  int factor;
};

struct say_hi
{
  typedef void result_type;

  template<class T> 
  void operator()(T const& in) const
  {
    std::cout << "Hi from value = " << in << "\n";
  }
};

int main()
{
  return_value r1,r2(5);
  (task(r1) | task(r2) | task(say_hi())) (7); // SHould print 35

  float k = 10,r;
  r = (task(r2) | task(r2) | task(r2) | task(r2))(k);
  std::cout << r << "\n"; // Should print 6250
}

The basic idea is to wrap function objects as proto terminals, build a small | based grammar and let the proto system deals with the composition.

于 2011-09-25T08:39:43.853 回答
1

Here is my solution for C++17.

#include <type_traits>
#include <utility>

template <class F>
struct waterfall
{
    waterfall(F&& f)
    : fn(std::forward<F>(f))
    {}

    template <class... Args>
    decltype(auto) operator()(Args&&... args) const {
        return fn(std::forward<Args>(args)...);
    }

    template <class T>
    auto then(T&& t) const & {
        return then_impl(fn, std::forward<T>(t));
    }

    template <class T>
    auto then(T&& t) const && {
        return then_impl(std::move(fn), std::forward<T>(t));
    }

private:
    F fn;

    template <class In, class Out>
    static auto then_impl(In&& in, Out&& out)
    {
        auto fn = [in = std::forward<In>(in), out = std::forward<Out>(out)](auto&&... args)
        {
            using InRet = std::invoke_result_t<In, decltype(args)...>;

            if constexpr (std::is_invocable_v<Out, InRet>) {
                return out(in(std::forward<decltype(args)>(args)...));
            }
            else {
                in(std::forward<decltype(args)>(args)...);
                return out();
            }
        };

        return waterfall<decltype(fn)>(std::move(fn));
    }
};

And use it like this

int main()
{
    // Create a chain
    waterfall chain([](const char* s) {
        return 42;
    })
    .then([](auto x) {
        // x = 42 here
        return x + 1;
    })
    .then([] {
        // Ignoring value from previous function.
        // Send double to next one.
        return 3.14;
    })
    .then([](double value) {
        // etc...
        return true;
    });

    // chain signature is now bool(const char*)

    // Now call our functions in chain
    bool ret = chain("test");
}
于 2021-08-26T20:23:06.377 回答