我已经实现了 D*-Lite 算法(这里有一个描述,它是一种在边缘成本随时间变化时进行寻路的算法),但是我在进行边缘成本更新时遇到了问题。它主要工作,但有时它会卡在一个循环中,在两个顶点之间来回移动。我正在尝试创建一个展示这种行为的测试用例,目前在大型应用程序中使用时会发生这种情况,这使得调试变得困难。
我会尽快建立一个测试用例,但也许有人可以立即发现我从伪到 C++ 所做的错误。(下面包含一个测试用例)这篇文章展示了一个优化版本,图 4,这是我已经实现的版本。伪代码粘贴在下面。
我的实现源代码可在此处获得。
如果有帮助,我将在我的代码中使用这些类型:
struct VertexProperties { double x, y; };
typedef boost::adjacency_list<boost::vecS,
boost::vecS,
boost::undirectedS,
VertexProperties,
boost::property<boost::edge_weight_t, double> > Graph;
typedef boost::graph_traits<Graph>::vertex_descriptor Vertex;
typedef DStarEuclidianHeuristic<Graph, Vertex> Heuristic;
typedef DStarPathfinder<Graph, Heuristic> DStarPathfinder;
如果需要有关使用的更多信息,请询问,粘贴太多了。
D*-Lite 的伪代码:
procedure CalculateKey(s)
{01”} return [min(g(s), rhs(s)) + h(s_start, s) + km;min(g(s), rhs(s))];
procedure Initialize()
{02”} U = ∅;
{03”} km = 0;
{04”} for all s ∈ S rhs(s) = g(s) = ∞;
{05”} rhs(s_goal) = 0;
{06”} U.Insert(s_goal, [h(s_start, s_goal); 0]);
procedure UpdateVertex(u)
{07”} if (g(u) != rhs(u) AND u ∈ U) U.Update(u,CalculateKey(u));
{08”} else if (g(u) != rhs(u) AND u /∈ U) U.Insert(u,CalculateKey(u));
{09”} else if (g(u) = rhs(u) AND u ∈ U) U.Remove(u);
procedure ComputeShortestPath()
{10”} while (U.TopKey() < CalculateKey(s_start) OR rhs(s_start) > g(s_start))
{11”} u = U.Top();
{12”} k_old = U.TopKey();
{13”} k_new = CalculateKey(u));
{14”} if(k_old < k_new)
{15”} U.Update(u, k_new);
{16”} else if (g(u) > rhs(u))
{17”} g(u) = rhs(u);
{18”} U.Remove(u);
{19”} for all s ∈ Pred(u)
{20”} if (s != s_goal) rhs(s) = min(rhs(s), c(s, u) + g(u));
{21”} UpdateVertex(s);
{22”} else
{23”} g_old = g(u);
{24”} g(u) = ∞;
{25”} for all s ∈ Pred(u) ∪ {u}
{26”} if (rhs(s) = c(s, u) + g_old)
{27”} if (s != s_goal) rhs(s) = min s'∈Succ(s)(c(s, s') + g(s'));
{28”} UpdateVertex(s);
procedure Main()
{29”} s_last = s_start;
{30”} Initialize();
{31”} ComputeShortestPath();
{32”} while (s_start != s_goal)
{33”} /* if (g(s_start) = ∞) then there is no known path */
{34”} s_start = argmin s'∈Succ(s_start)(c(s_start, s') + g(s'));
{35”} Move to s_start;
{36”} Scan graph for changed edge costs;
{37”} if any edge costs changed
{38”} km = km + h(s_last, s_start);
{39”} s_last = s_start;
{40”} for all directed edges (u, v) with changed edge costs
{41”} c_old = c(u, v);
{42”} Update the edge cost c(u, v);
{43”} if (c_old > c(u, v))
{44”} if (u != s_goal) rhs(u) = min(rhs(u), c(u, v) + g(v));
{45”} else if (rhs(u) = c_old + g(v))
{46”} if (u != s_goal) rhs(u) = min s'∈Succ(u)(c(u, s') + g(s'));
{47”} UpdateVertex(u);
{48”} ComputeShortestPath()
编辑:
我成功地创建了一个显示错误行为的测试用例。将它与 pastebin 中的代码一起运行,它会在最后一次get_path
调用中挂断,在节点 1 和 2 之间来回切换。在我看来,这是因为节点 3 从未被触及,所以那样走会有一个无限的代价。
#include <cmath>
#include <boost/graph/adjacency_list.hpp>
#include "dstar_search.h"
template <typename Graph, typename Vertex>
struct DStarEuclidianHeuristic {
DStarEuclidianHeuristic(const Graph& G_) : G(G_) {}
double operator()(const Vertex& u, const Vertex& v) {
double dx = G[u].x - G[v].x;
double dy = G[u].y - G[v].y;
double len = sqrt(dx*dx+dy*dy);
return len;
}
const Graph& G;
};
struct VertexProp {
double x, y;
};
int main() {
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS,
VertexProp, boost::property<boost::edge_weight_t, double> > Graph;
typedef boost::graph_traits<Graph>::vertex_descriptor Vertex;
typedef boost::graph_traits<Graph>::edge_descriptor Edge;
typedef DStarEuclidianHeuristic<Graph, Vertex> Heur;
typedef boost::property_map<Graph, boost::edge_weight_t>::type WMap;
Graph g(7);
WMap weights = boost::get(boost::edge_weight, g);
Edge e;
// Create a graph
e = boost::add_edge(0, 1, g).first;
weights[e] = sqrt(2.);
e = boost::add_edge(1, 2, g).first;
weights[e] = 1;
e = boost::add_edge(2, 3, g).first;
weights[e] = 1;
e = boost::add_edge(1, 4, g).first;
weights[e] = 1;
e = boost::add_edge(3, 4, g).first;
weights[e] = 1;
e = boost::add_edge(3, 5, g).first;
weights[e] = sqrt(2.);
e = boost::add_edge(2, 6, g).first;
weights[e] = sqrt(2.);
e = boost::add_edge(5, 6, g).first;
weights[e] = 1;
e = boost::add_edge(6, 7, g).first;
weights[e] = 1;
g[0].x = 1; g[0].y = 0;
g[1].x = 0; g[1].y = 1;
g[2].x = 0; g[2].y = 2;
g[3].x = 1; g[3].y = 2;
g[4].x = 1; g[4].y = 1;
g[5].x = 2; g[5].y = 3;
g[6].x = 1; g[6].y = 3;
g[7].x = 1; g[7].y = 4;
DStarPathfinder<Graph, Heur> dstar(g, Heur(g), 0, 7);
std::list<std::pair<Edge, double>> changes;
auto a = dstar.get_path(); // Find the initial path, works well
std::copy(a.begin(), a.end(), std::ostream_iterator<Vertex>(std::cout, ","));
// Now change the cost of going from 2->6, and try to find a new path
changes.push_back(std::make_pair(boost::edge(2, 6, g).first, 4.));
dstar.update(changes);
a = dstar.get_path(); // Stuck in loop
std::copy(a.begin(), a.end(), std::ostream_iterator<Vertex>(std::cout, ","));
return 0;
}
编辑2:更多进展。如果我用just (不为空)替换while
循环中的中断条件,则找到路径!虽然它很慢,因为它总是检查图中的每个节点,这不应该是必需的。此外,由于我使用无向图,我添加了一些代码来更新和.ComputeShortestPath
U != Ø
U
{40"}
u
v