I have come across code from someone who appears to believe there is a problem subtracting an unsigned integer from another integer of the same type when the result would be negative. So that code like this would be incorrect even if it happens to work on most architectures.
unsigned int To, Tf;
To = getcounter();
while (1) {
Tf = getcounter();
if ((Tf-To) >= TIME_LIMIT) {
break;
}
}
This is the only vaguely relevant quote from the C standard I could find.
A computation involving unsigned operands can never overflow, because a result that cannot be represented by the resulting unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting type.
I suppose one could take that quote to mean that when the right operand is larger the operation is adjusted to be meaningful in the context of modulo truncated numbers.
i.e.
0x0000 - 0x0001 == 0x 1 0000 - 0x0001 == 0xFFFF
as opposed to using the implementation dependent signed semantics:
0x0000 - 0x0001 == (unsigned)(0 + -1) == (0xFFFF but also 0xFFFE or 0x8001)
Which or what interpretation is right? Is it defined at all?